- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Tkocz, Tomasz (3)
-
Eskenazis, Alexandros (2)
-
Nayar, Piotr (2)
-
Glover, Nathaniel (1)
-
Piotr Nayar, Tomasz Tkocz (1)
-
Wyczesany, Katarzyna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove an extension of Szarek’s optimal Khinchin inequality (1976) for distributions close to the Rademacher one, when all the weights are uniformly bounded by a$$1/\sqrt{2}$$ fraction of their total$$\ell _2$$ -mass. We also show a similar extension of the probabilistic formulation of Ball’s cube slicing inequality (1986). These results establish the distributional stability of these optimal Khinchin-type inequalities. The underpinning to such estimates is the Fourier-analytic approach going back to Haagerup (1981).more » « less
-
Glover, Nathaniel; Tkocz, Tomasz; Wyczesany, Katarzyna (, Mathematika)Abstract We prove a dimension‐free stability result for polydisc slicing due to Oleszkiewicz and Pełczyński. Intriguingly, compared to the real case, there is an additional asymptotic maximizer. In addition to Fourier‐analytic bounds, we crucially rely on a self‐improving feature of polydisc slicing, established via probabilistic arguments.more » « less
-
Eskenazis, Alexandros; Nayar, Piotr; Tkocz, Tomasz (, Duke Mathematical Journal)Free, publicly-accessible full text available November 15, 2025
-
Piotr Nayar, Tomasz Tkocz (, Adv. Anal. Geom.)
An official website of the United States government

Full Text Available