skip to main content


This content will become publicly available on August 22, 2024

Title: Biogeochemical Processes Are Altered by Non‐Conservative Mixing at Stream Confluences
Abstract

Stream confluences are ubiquitous interfaces in freshwater networks and serve as junctions of previously independent landscapes. However, few studies have investigated how confluences influence the transport, mixing, and fate of organic matter (OM) and inorganic nutrients at the scale of river networks. To understand how network biogeochemical fluxes may be altered by confluences, we conducted two sampling campaigns at five confluences in summer and fall 2021 spanning the extent of a mixed land use stream network. We sampled the confluence mainstem and tributary reaches as well as throughout the mixing zone downstream. We predicted that biologically reactive solutes would mix non‐conservatively downstream of confluences and that alterations to downstream biogeochemistry would be driven by differences in chemistry and size of the tributary and upstream reaches. In our study, confluences were geomorphically distinct (e.g., wider, deeper, unique erosional, and depositional features) downstream compared to reaches upstream of the confluence. Dissolved OM and nutrients mixed non‐conservatively downstream of the five confluences. Biogeochemical patterns downstream of confluences were only partially explained by contributing reach chemistry and drainage area. We found that the relationship between geomorphic variability, water residence time, and microbial respiration differed between reaches upstream and downstream of confluences. The lack of explanatory power from network‐scale drivers suggests that non‐conservative mixing downstream of confluences may be driven by biogeochemical processes within the confluence mixing zone. The unique geomorphology, non‐conservative biogeochemistry, and ubiquity of confluences highlights a need to account for the distinct functional role of confluences in water resource management in freshwater networks.

 
more » « less
NSF-PAR ID:
10465635
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Confluences are locations of complex hydrodynamic conditions within river systems. The effects on hydrodynamics and mixing of temperature‐induced density differences between incoming flows are investigated at a small‐size, concordant bed confluence. To evaluate density effects, results of eddy‐resolving simulations for a densimetric Froude numberFr= 4.9 (weak‐density‐effects cases) andFr= 1.6 (strong‐density‐effects cases) are compared to results of simulations in which the densities of the incoming flows do not differ (no‐density‐effects cases). Flow patterns predicted for both weak‐ and strong‐density‐effects cases show that secondary flow develops with increasing distance from the confluence apex. The pattern of secondary flow is characterized by denser fluid on one side of the confluence moving near the bed toward the side of the downstream channel corresponding to the less dense fluid and the less dense fluid moving near the free surface in the opposite direction. This pattern of fluid motion is similar to a spatially evolving lock‐exchange cross flow. In the strong‐density‐effects simulations, a cross‐stream cell of secondary flow develops at the density interface between the flows, similar to interfacial billows generated in classical lock‐exchange flows. Density effects increase global mixing with respect to corresponding no‐density‐effects cases regardless of whether the high‐momentum stream contains the higher‐density fluid or the lower‐density fluid. When density effects are weak, the lock‐exchange mechanism either reinforces the pattern of mixing associated with secondary flow induced by inertial forces, particularly helical motion, or opposes this pattern of mixing, depending on which tributary contains the denser fluid. When density effects are strong, flow from the upstream channel with the denser fluid moves under the flow from the upstream channel with the less dense fluid.

     
    more » « less
  2. Abstract

    Despite widespread recognition that confluences are characterized by complex hydrodynamic conditions, few studies have mapped in detail spatial patterns of flow at confluences and variation in these patterns over time. Recent developments in large‐scale particle image velocimetry (LSPIV) have created novel opportunities to explore the spatial and temporal dynamics of flow patterns at confluences. This study uses LSPIV to map two‐dimensional flow structure at the water surface at a confluence and to examine variation in this structure over time. Results show that flow within the confluence is characterized by a large region of flow stagnation at the junction apex, a region of low velocities at the downstream junction corner, and a region of merging of the two flows along a mixing interface within the center of the confluence. Interaction between the incoming flows varies over time in the form of episodic pulsing in which one of the two tributary flows first decelerates and then subsequently accelerates into the confluence. The cause of this pulsing remains uncertain, but it may reflect unsteadiness in the water‐surface pressure‐gradient field as the two flows compete for space within the confluence. No large‐scale vortices are evident within the mixing interface for the particular flow conditions documented in this study, but such vortices do occur along the margins of the stagnation zone where shearing action between fast‐moving and slow‐moving fluid is strong. The results of the study provide insight into the time‐dependent dynamics of the spatial structure of flow at stream confluences.

     
    more » « less
  3. Abstract

    Confluences are important sites for mixing within river networks. Past work has shown that mixing within confluences is highly variable; in some cases flows mix rapidly and in other cases flows remain unmixed far downstream of the confluence. The fluvial processes that govern mixing within confluences remain poorly understood. This study relates patterns and amounts of mixing to three‐dimensional flow structure at three small confluences. It focuses on lateral fluxes of streamwise momentum, which theoretical considerations suggest should influence lateral mixing. Patterns and amounts of mixing differ at the three sites. Considerable mixing occurs at an asymmetrical confluence with strong helical motion within flow from the lateral tributary, which produces substantial differences in advective lateral transport of streamwise momentum over depth. Minor mixing occurs at a comparatively symmetrical confluence where incoming flows have relatively equal momentum fluxes; however, helical motion within one of the flows locally increases mixing. At a symmetrical confluence where one incoming flow has much greater momentum flux than the other, mixing occurs largely through progressive lateral shifting of the mixing interface toward the minor tributary because of the strong lateral flux of streamwise momentum by the dominant tributary. At all three confluences, lateral turbulent transport of streamwise momentum is an order of magnitude less than advective lateral transport of streamwise momentum. The study indicates that generalization of mixing at confluences remains challenging but that advective lateral fluxes of streamwise momentum related to secondary currents (helical motion) or primary flow (cross currents) greatly enhance mixing at confluences.

     
    more » « less
  4. This data set includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected during the summer months (June – August) from downstream and upstream reaches in multiple streams in the Hubbard Brook Experimental Forest. Downstream reaches begin at the confluence with the Main Hubbard and extend upstream 500 meters and upstream reaches begin at the weir and extend downstream 500 meters. Downstream reaches contain brook trout and upstream reaches do not. We used a robust design framework with approximately 9 surveys per reach each summer (3 primary occasions with 3 secondary occasions each). Salamanders were captured by hand and marked with either Visual Implant Elastomer and/or a PIT tag. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been published in the following papers: Lowe WH, Addis BR, Smith MR, Davenport JM. The spatial structure of variation in salamander survival, body condition and morphology in a headwater stream network. Freshwater Biol. 2018;63:1287–1299. https://doi.org/10.1111/fwb.13133 Lowe, W. H., and Addis, B. R.. 2019. Matching habitat choice and plasticity contribute to phenotype–environment covariation in a stream salamander. Ecology 100( 5):e02661. 10.1002/ecy.2661 Lowe, W.H., et al. Hydrologic variability contributes to reduced survival through metamorphosis in a stream salamander. Proceedings of the National Academy of Sciences 2019; 116.39: 19563-19570. Bryant, A.R., Gabor, C.R., Swartz, L.K., Wagner, R., Cochrane, M.M., Lowe, W.H. Differences in corticosterone release rates of larval Spring Salamanders (Gyrinophilus porphyriticus) in response to native fish presence. Biology 2022; 11.484. https://doi.org/10.3390/biology11040484 Addis, B.R., and W.H. Lowe. Environmentally associated variation in dispersal distance affects inbreeding risk in a stream salamander." The American Naturalist 2022. 
    more » « less
  5. Abstract

    Confluences are a classic feature in riverine networks with important ecological and morphological functions. A method to characterize the hydraulic complexity of a river based on velocity gradients was applied, for high and low flow conditions, to the Negro and Solimões Rivers confluence in the Amazon basin. The applied metricsM1andM2approximate the drag forces imposed on aquatic organisms moving between 2 locations and may identify potential habitat zones and edges. MetricM2corresponded best with the hydraulic and morphological patterns in the confluence hydrodynamic zone, with the largestM2values in the entrance of the confluence, centered at the mixing interface, andM2values generally decaying laterally toward the banks and longitudinally with downstream distance. Seasonal decreases in discharge magnitude in the Amazon, and decreases in discharge between other river basins analyzed in this study, led to increases in hydraulic complexity metricM2. The hydraulic complexity metrics can characterize some aspects of habitat heterogeneity and contribute to an explanation for observations of increased species richness at Amazon basin confluences and the larger ecological patterns of diversity increasing at nodes in riverine networks.

     
    more » « less