skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus), Hubbard Brook Experimental Forest, 2012 – present
{"Abstract":["This data set includes spatially explicit mark-recapture data of the\nNorthern Spring Salamander (Gyrinophilus porphyriticus) collected during\nthe summer months (June \u2013 August) from downstream and upstream reaches\nin multiple streams in the Hubbard Brook Experimental Forest. Downstream\nreaches begin at the confluence with the Main Hubbard and extend\nupstream 500 meters and upstream reaches begin at the weir and extend\ndownstream 500 meters. Downstream reaches contain brook trout and\nupstream reaches do not. We used a robust design framework with\napproximately 9 surveys per reach each summer (3 primary occasions with\n3 secondary occasions each). Salamanders were captured by hand and\nmarked with either Visual Implant Elastomer and/or a PIT tag.\n These data were gathered as part of the Hubbard Brook Ecosystem Study\n(HBES). The HBES is a collaborative effort at the Hubbard Brook\nExperimental Forest, which is operated and maintained by the USDA Forest\nService, Northern Research Station.\n These data have been published in the following papers: \n Lowe WH, Addis\nBR, Smith MR, Davenport JM. The spatial structure of variation in\nsalamander survival, body condition and morphology in a headwater stream\nnetwork. Freshwater Biol. 2018;63:1287\u20131299.\nhttps://doi.org/10.1111/fwb.13133\n Lowe, W. H., and Addis, B. R.. 2019. Matching habitat choice and plasticity contribute to phenotype\u2013environment covariation in a stream salamander. Ecology 100( 5):e02661. 10.1002/ecy.2661 \n Lowe, W.H., et al. Hydrologic variability contributes to reduced survival through metamorphosis in a stream salamander. Proceedings of the National Academy of Sciences 2019; 116.39: 19563-19570.\n Bryant, A.R., Gabor, C.R., Swartz, L.K., Wagner, R., Cochrane, M.M., Lowe, W.H. Differences in corticosterone release rates of larval Spring Salamanders (Gyrinophilus porphyriticus) in response to native fish presence. Biology 2022; 11.484. https://doi.org/10.3390/biology11040484\n Addis, B.R., and W.H. Lowe. Environmentally associated variation in dispersal distance affects inbreeding risk in a stream salamander." The American Naturalist 2022."]}  more » « less
Award ID(s):
1637685
PAR ID:
10395941
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected during the summer months (June – August) from downstream and upstream reaches in multiple streams in the Hubbard Brook Experimental Forest. Downstream reaches begin at the confluence with the Main Hubbard and extend upstream 500 meters and upstream reaches begin at the weir and extend downstream 500 meters. Downstream reaches contain brook trout and upstream reaches do not. We used a robust design framework with 9 surveys per reach each summer (3 primary occasions with 3 secondary occasions each). Salamanders were captured by hand and marked with either Visual Implant Elastomer and/or a PIT tag. The data table herein is specific to the following publication: Lowe, W.H., B.R. Addis, M.M. Cochrane, and L.K. Swartz. In press. Source-sink dynamics within a complex life history. Ecology. These data are a subset of the primary long term dataset available at https://doi.org/10.6073/pasta/cd5f5a03df194930bf87eb12157b8182 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  2. This data set includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected via telemetry during the summer months (June – September) from 2019 - 2021 from eight reaches in multiple streams in the Hubbard Brook Experimental Forest. Salamanders were captured by hand and marked with PIT-tags. Telemetry surveys occurred weekly. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data are being used to publish the following papers: Cochrane, M. M., B. R. Addis, L. K. Swartz, and W. H. Lowe. 2023. Individual and population growth rates decline with watershed area in a stream salamander. In review Ecology. Cochrane, M. M., and W. H. Lowe. 2023. Floods increase downstream movement of adult and larval life stages of a headwater stream salamander. In prep Freshwater Biology. 
    more » « less
  3. This project was designed to describe fine-scale population genetic differentiation of the stream salamander Gryinophilus porphyriticus among five study streams in the Hubbard Brook Experimental Forest. The data are paired with intensive capture-recapture data to assess direct fitness effects of individual genetic diversity, including effects of individual multilocus heterozygosity on stage-specific survival probabilities. This dataset publishes a manifest of the genomic sequence reads submitted to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). These samples are published at NCBI under the BioProject ID 1090913 (https://www.ncbi.nlm.nih.gov/bioproject/1090913). The tables here include sample metadata and the NCBI URLs to each sample. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Changes in the amount, intensity, and timing of precipitation are increasing hydrologic variability in many regions, but we have little understanding of how these changes are affecting freshwater species. Stream-breeding amphibians—a diverse group in North America—may be particularly sensitive to hydrologic variability during aquatic larval and metamorphic stages. Here, we tested the prediction that hydrologic variability in streams decreases survival through metamorphosis in the salamander Gyrinophilus porphyriticus , reducing recruitment to the adult stage. Using a 20-y dataset from Merrill Brook, a stream in northern New Hampshire, we show that abundance of G. porphyriticus adults has declined by ∼50% since 1999, but there has been no trend in larval abundance. We then tested whether hydrologic variability during summers influences survival through metamorphosis, using capture–mark–recapture data from Merrill Brook (1999 to 2004) and from 4 streams in the Hubbard Brook Experimental Forest (2012 to 2014), also in New Hampshire. At both sites, survival through metamorphosis declined with increasing variability of stream discharge. These results suggest that hydrologic variability reduces the demographic resilience and adaptive capacity of G. porphyriticus populations by decreasing recruitment of breeding adults. They also provide insight on how increasing hydrologic variability is affecting freshwater species, and on the broader effects of environmental variability on species with vulnerable metamorphic stages. 
    more » « less
  5. The valley-wide plots are a grid of 431 sites along fifteen N–S transects established at 500-m intervals spanning the entire Hubbard Brook Valley. This dataset includes total soil carbon, nitrogen and organic matter content, potential net nitrogen mineralization and nitrification rates, microbial respiration rates, soil water content and holding capacity, soil ammonium and nitrate concentrations, soil pH, and tree composition in a subset of 100 randomly selected plots in 2000. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. An analysis of these data can be found in: Venterea, R. T., Lovett, G. M., Groffman, P. M., & Schwarz, P. A. (2003). Landscape patterns of net nitrification in a northern hardwood-conifer forest. Soil Science Soc. Amer. J., 67, 527–539. https://doi.org/10.2136/sssaj2003.5270 
    more » « less