skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles
Abstract Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants’ lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective ‘fitness factors’ or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical ‘memory’ of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.  more » « less
Award ID(s):
2045610
PAR ID:
10465663
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
AoB PLANTS
Volume:
15
Issue:
5
ISSN:
2041-2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost orconstraintof water. We move beyond this approach by developing a new, generalized optimality theory of stomatal conductance, optimizing any non‐foliar proxy that requires water and carbon reserves, like growth, survival, and reproduction. We overcome two prior limitations. First, we reconcile the computational efficiency ofinstantaneousoptimization with a more biologically meaningfuldynamic feedbackoptimization over plant lifespans. Second, we incorporatenon‐steady‐statephysics in the optimization to account for the temporal changes in the water, carbon, and energy storage within a plant and its environment that occur over the timescales that stomata act, contrary to previous theories. Our optimal stomatal conductance compares well to observations from seedlings, saplings, and mature trees from field and greenhouse experiments. Our model predicts predispositions to mortality during the 2018 European drought and captures realistic responses to environmental cues, including the partial alleviation of heat stress by evaporative cooling and the negative effect of accumulating foliar soluble carbohydrates, promoting closure under elevated CO2. We advance stomatal optimality theory by incorporating generalized evolutionary fitness proxies and enhance its utility without compromising its realism, offering promise for future models to more realistically and accurately predict global carbon and water fluxes. 
    more » « less
  2. SUMMARY Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized inArabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D‐nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild‐type and cellulose‐deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation. 
    more » « less
  3. ABSTRACT Understanding how plants regulate water loss is important for improving crop productivity. Tight control of stomatal opening and closing is essential for the uptake of CO2while mitigating water vapor loss. The opening of stomata is regulated in part by homotypic vacuole fusion, which is mediated by conservedhomotypic vacuoleproteinsorting (HOPS) and vacuolar SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) complexes. HOPS tethers apposing vacuole membranes and promotes the formation oftrans-SNARE complexes to mediate fusion. In yeast, HOPS dissociates from the assembled SNARE complex to complete vacuole fusion, but little is known about this process in plants. HOPS-specific subunits VACUOLE PROTEIN SORTING39 (VPS39) and VPS41 are required for homotypic plant vacuole fusion, and a computational model predicted that post-translational modifications of HOPS may be needed for plant stomatal vacuole fusion. Here, we characterized a viable T-DNA insertion allele ofVPS39which demonstrated a critical role of VPS39 in stomatal vacuole fusion. We found that VPS39 has increased levels of phosphorylation when stomata are closed versus open, and that VPS39 function in stomata and embryonic development requires dynamic changes in phosphorylation. Our data are consistent with VPS39 phosphorylation altering vacuole dynamics in response to environmental cues, similar to well-established phosphorylation cascades that regulate ion transport during stomatal opening. SIGNIFICANCE STATEMENTVacuole fusion is important for stomata opening but how it is regulated in response of stomata opening signals is not characterized. This research demonstrated the role of the HOPS complex in vacuole fusion in stomata, and it identified phosphorylation sites in the HOPS subunit VPS39 that are critical for vacuole fusion. One Ser residue was enriched in closed stomata and represents a putative site for control of vacuole fusion downstream of stomata opening signals. 
    more » « less
  4. Abstract To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell‐to‐cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above‐ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2‐rich environment. 
    more » « less
  5. Abstract The phytohormone abscisic acid (ABA) plays a major role in closing the stomata of angiosperms. However, recent reports of some angiosperm species having a peaking-type ABA dynamic, in which under extreme drought ABA levels decline to pre-stressed levels, raises the possibility that passive stomatal closure by leaf water status alone can occur in species from this lineage. To test this hypothesis, we conducted instantaneous rehydration experiments in the peaking-type species Umbellularia californica through a long-term drought, in which ABA levels declined to pre-stress levels, yet stomata remain closed. We found that when ABA levels were lowest during extreme drought, stomata reopen rapidly to maximum rates of gas exchange on instantaneous rehydration, suggesting that the stomata of U. californica were passively closed by leaf water status alone. This contrasts with leaves early in drought, in which ABA levels were highest and stomata did not reopen on instantaneous rehydration. The transition from ABA-driven stomatal closure to passively driven stomatal closure as drought progresses in this species occurs at very low water potentials facilitated by highly embolism-resistant xylem. These results have important implications for understanding stomatal control during drought in angiosperms. 
    more » « less