Abstract Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small‐scale non‐destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf‐to‐air vapour pressure deficits.
more »
« less
Generalized Stomatal Optimization of Evolutionary Fitness Proxies for Predicting Plant Gas Exchange Under Drought, Heatwaves, and Elevated CO2
ABSTRACT Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost orconstraintof water. We move beyond this approach by developing a new, generalized optimality theory of stomatal conductance, optimizing any non‐foliar proxy that requires water and carbon reserves, like growth, survival, and reproduction. We overcome two prior limitations. First, we reconcile the computational efficiency ofinstantaneousoptimization with a more biologically meaningfuldynamic feedbackoptimization over plant lifespans. Second, we incorporatenon‐steady‐statephysics in the optimization to account for the temporal changes in the water, carbon, and energy storage within a plant and its environment that occur over the timescales that stomata act, contrary to previous theories. Our optimal stomatal conductance compares well to observations from seedlings, saplings, and mature trees from field and greenhouse experiments. Our model predicts predispositions to mortality during the 2018 European drought and captures realistic responses to environmental cues, including the partial alleviation of heat stress by evaporative cooling and the negative effect of accumulating foliar soluble carbohydrates, promoting closure under elevated CO2. We advance stomatal optimality theory by incorporating generalized evolutionary fitness proxies and enhance its utility without compromising its realism, offering promise for future models to more realistically and accurately predict global carbon and water fluxes.
more »
« less
- PAR ID:
- 10574772
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background and AimsDynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth’s climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes have not yet been systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models. MethodsWe reviewed the scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypic (acclimation) and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio [χ(optimal)] and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally separated responses in these trait combinations to CO2 and humidity. Key ResultsWe identified 17 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypic response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax. ConclusionsWe highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypic and evolutionary response mechanisms.more » « less
-
Abstract Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in threePinus radiataclones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction inKroot‐rcaused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease inKplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery ofKroot‐randgs. Our results demonstrated that the reduction inKplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleafas water stress started. We concluded that higherKplant‐lis associated with water stress resistance by sustaining a less negative Ψleafand delaying stomatal closure.more » « less
-
Abstract Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon‐maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.more » « less
-
Abstract Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants’ lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective ‘fitness factors’ or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical ‘memory’ of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.more » « less
An official website of the United States government
