skip to main content

Title: Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum

The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the near-field electromagnetic interactions that produce optical orbital angular momentum (OAM) is crucial for integrating twisted light into nanotechnology. Here, we examine the cathodoluminescence (CL) of plasmonic vortices carrying OAM generated in spiral nanostructures. The nanospiral geometry defines a photonic local density of states that is sampled by the electron probe in a scanning transmission electron microscope (STEM), thus accessing the optical response of the plasmonic vortex with high spatial and spectral resolution. We map the full spectral dispersion of the plasmonic vortex in spiral structures designed to yield increasing topological charge. Additionally, we fabricate nested nanospirals and demonstrate that OAM from one nanospiral can be coupled to the nested nanospiral, resulting in enhanced luminescence in concentric spirals of like handedness with respect to concentric spirals of opposite handedness. The results illustrate the potential for generating and coupling plasmonic vortices in chiral nanostructures for sensitive detection and manipulation of optical OAM.

    more » « less
  2. Abstract

    Moiré patterns at van der Waals interfaces between twisted 2D crystals give rise to distinct optoelectronic excitations, as well as, narrowly dispersive bands responsible for correlated electron phenomena. Contrasting with the conventional, mechanically stacked planar twist moirés, recent work shows twisted van der Waals interfaces spontaneously formed in nanowires of layered crystals, where Eshelby twist due to axial screw dislocations stabilizes a chiral structure with small interlayer rotation. Here, the realization of tunable twist in germanium(II) sulfide (GeS) van der Waals nanowires is reported. Tapered nanowires host continuously variable interlayer twist. Homojunctions between dislocated (chiral) and defect‐free (achiral) segments are obtained by triggering the emission of axial dislocations during growth. Measurements across such junctions, implemented here using local absorption and luminescence spectroscopy, provide a convenient tool for detecting twist effects. The results identify a versatile system for 3D twistronics, probing moiré physics, and for realizing moiré architectures without equivalent in planar systems.

    more » « less
  3. Abstract

    The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single‐layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi‐periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single‐layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements.

    more » « less
  4. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

    more » « less
  5. Abstract

    The Pancharatnam–Berry phase induced by the winding topology of polarization around a vortex singularity at bound states in the continuum (BIC) provides a unique approach to optical vortex (OV) generation. The BIC-based OV generators have the potential to outperform their counterparts that rely on spatial variations in terms of design feasibility, fabrication complexity, and robustness. However, given the fact that this class of OV generators originates from the topological property of the photonic bands, their responses are generally fixed and cannot be dynamically altered, which limits their applications to photonic systems. Here, we numerically demonstrate that a silicon photonic crystal slab can be used to realize optically switchable OV generation by simultaneously exploiting the vortex topology in momentum space in conjunction with silicon’s nonlinear dynamics. Picosecond switching of OV beams at near-infrared wavelengths are observed. The demonstrated nontrivial topological nature of the active generators can significantly expand the application of BIC toward ultrafast vortex beam generation, high-capacity optical communication, and mode-division multiplexing.

    more » « less