skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2140304

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Point defects typically reduce the thermal conductivity (κ) of a crystal due to increased scattering of heat‐carrying phonons, a mechanism that is well understood and widely used to enhance or impede heat transfer in the material for different applications. Here an opposite effect is reported where the introduction of point defects in graphite with energetic particle irradiation increases its cross‐planeκby nearly a factor of two, from 10.8 to 18.9 W m K−1at room temperature. Integrated differential phase contrast imaging with scanning transmission electron microscopy revealed the creation of spiro interstitials in graphite by the irradiation. The enhancement inκis attributed to a remarkable mechanism that works to the benefit of phonon propagation in both the harmonic and anharmonic terms: these spiro interstitial defects covalently bridge neighboring basal planes, simultaneously enhancing acoustic phonon group velocity and reducing phonon–phonon scattering in the graphite structure. The enhancement ofκreveals an unconventional role of lattice defects in heat conduction, i.e., easing the propagation of heat‐carrying phonons rather than impeding them in layered materials, inspiring their applications for thermal management in heavily radiative environments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics. 
    more » « less