Devices that can morph their functions on demand provide a rich yet unexplored paradigm for the next generation of electronic devices and sensors. For example, an antenna that can morph its shape can be used to adapt communication to different wireless standards or improve wireless signal reception. We utilize temperature-sensitive shape memory alloys (SMA) to realize a shape morphing antenna (ShMoA). In the designed architecture, multiple conjoined shape memory alloy sections form the antenna. The shape morphing of this antenna is achieved through temperature control. Different temperature threshold levels are used for programming the shape. Besides its conventional use for RF applications, ShMoA can serve as a multi-level temperature sensor, analogous to thermoreceptors in an insect antenna. ShMoA essentially combines the function of temperature sensing, embedded computing for detection of threshold crossings, and radio frequency readout, all in the single construct of a shape-morphing antenna (ShMoA) without the need for any battery or peripheral electronics. The ShMoA can be employed as bio-inspired wireless temperature sensing antennae on mobile robotic flies, insects, drones and other robots. It can also be deployed as programmable antennas for multi-standard wireless communication.
more »
« less
Embedded shape morphing for morphologically adaptive robots
Abstract Shape-morphing robots can change their morphology to fulfill different tasks in varying environments, but existing shape-morphing capability is not embedded in a robot’s body, requiring bulky supporting equipment. Here, we report an embedded shape-morphing scheme with the shape actuation, sensing, and locking, all embedded in a robot’s body. We showcase this embedded scheme using three morphing robotic systems: 1) self-sensing shape-morphing grippers that can adapt to objects for adaptive grasping; 2) a quadrupedal robot that can morph its body shape for different terrestrial locomotion modes (walk, crawl, or horizontal climb); 3) an untethered robot that can morph its limbs’ shape for amphibious locomotion. We also create a library of embedded morphing modules to demonstrate the versatile programmable shapes (e.g., torsion, 3D bending, surface morphing, etc.). Our embedded morphing scheme offers a promising avenue for robots to reconfigure their morphology in an embedded manner that can adapt to different environments on demand.
more »
« less
- Award ID(s):
- 2126039
- PAR ID:
- 10465698
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.more » « less
-
Abstract For decades, the field of biologically inspired robotics has leveraged insights from animal locomotion to improve the walking ability of legged robots. Recently, “biomimetic” robots have been developed to model how specific animals walk. By prioritizing biological accuracy to the target organism rather than the application of general principles from biology, these robots can be used to develop detailed biological hypotheses for animal experiments, ultimately improving our understanding of the biological control of legs while improving technical solutions. In this work, we report the development and validation of the robot Drosophibot II, a meso-scale robotic model of an adult fruit fly, Drosophila melanogaster. This robot is novel for its close attention to the kinematics and dynamics of Drosophila, an increasingly important model of legged locomotion. Each leg’s proportions and degrees of freedom have been modeled after Drosophila 3D pose estimation data. We developed a program to automatically solve the inverse kinematics necessary for walking and solve the inverse dynamics necessary for mechatronic design. By applying this solver to a fly-scale body structure, we demonstrate that the robot’s dynamics fit those modeled for the fly. We validate the robot’s ability to walk forward and backward via open-loop straight line walking with biologically inspired foot trajectories. This robot will be used to test biologically inspired walking controllers informed by the morphology and dynamics of the insect nervous system, which will increase our understanding of how the nervous system controls legged locomotion.more » « less
-
In nature, animals with soft body parts demonstrate remarkable control over their shape, such as an elephant trunk wrapping around a tree branch to pick it up. However, most research on robotic manipulators focuses on controlling the end effector, partly because the manipulator’s arm is rigidly articulated. With recent advances in soft robotics research, controlling a soft manipulator into many different shapes will significantly improve the robot’s functionality, such as medical robots morphing their shape to navigate the digestive system and deliver drugs to specific locations. However, controlling the shape of soft robots is challenging due to their highly nonlinear dynamics that are computationally intensive. In this paper, we leverage a physics-informed, data-driven approach using the Koopman operator to realize the shape control of soft robots. We simulate the dynamics of a soft manipulator using a physics-based simulator (PyElastica) to generate the input-output data, which is then used to identify an approximated linear model based on the Koopman operator. We then formulate the shapecontrol problem as a convex optimization problem that is computationally efficient. Our linear model is over 12 times faster than the physics-based model in simulating the manipulator’s motion. Further, we can control a soft manipulator into different shapes using model predictive control. We envision that the proposed method can be effectively used to control the shapes of soft robots to interact with uncertain environments or enable shape-morphing robots to fulfill diverse tasks.more » « less
-
Reinforcement learning control methods can impart robots with the ability to discover effective behavior, reducing their modeling and sensing requirements, and enabling their ability to adapt to environmental changes. However, it remains challenging for a robot to achieve navigation in confined and dynamic environments, which are characteristic of a broad range of biomedical applications, such as endoscopy with ingestible electronics. Herein, a compact, 3D‐printed three‐linked‐sphere robot synergistically integrated with a reinforcement learning algorithm that can perform adaptable, autonomous crawling in a confined channel is demonstrated. The scalable robot consists of three equally sized spheres that are linearly coupled, in which the extension and contraction in specific sequences dictate its navigation. The ability to achieve bidirectional locomotion across frictional surfaces in open and confined spaces without prior knowledge of the environment is also demonstrated. The synergistic integration of a highly scalable robotic apparatus and the model‐free reinforcement learning control strategy can enable autonomous navigation in a broad range of dynamic and confined environments. This capability can enable sensing, imaging, and surgical processes in previously inaccessible confined environments in the human body.more » « less
An official website of the United States government
