skip to main content

Title: Position Control and Variable-Height Trajectory Tracking of a Soft Pneumatic Legged Robot
Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.
Authors:
;
Award ID(s):
2046270 1910087
Publication Date:
NSF-PAR ID:
10318936
Journal Name:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sponsoring Org:
National Science Foundation
More Like this
  1. : Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy.
  2. Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture.
  3. We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially around a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneu- matic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.
  4. In this paper, we present a new locomotion control method for soft robot snakes. Inspired by biological snakes, our control architecture is composed of two key modules: A reinforcement learning (RL) module for achieving adaptive goal-tracking behaviors with changing goals, and a central pattern generator (CPG) system with Matsuoka oscillators for generating stable and diverse locomotion patterns. The two modules are interconnected into a closed-loop system: The RL module, analogizing the locomotion region located in the midbrain of vertebrate animals, regulates the input to the CPG system given state feedback from the robot. The output of the CPG system is then translated into pressure inputs to the pneumatic actuators of the soft snake robot. Based on the fact that the oscillation frequency and wave amplitude of the Matsuoka oscillator can be independently controlled under different time scales, we further adapt the option-critic framework to improve the learning performance measured by optimality and data efficiency. The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots.
  5. Soft, tip-extending, pneumatic “vine robots” that grow via eversion are well suited for navigating cluttered environments. Two key mechanisms that add to the robot’s functionality are a tip-mounted retraction device that allows the growth process to be reversed, and a tip-mounted camera that enables vision. However, previous designs used rigid, relatively heavy electromechanical retraction devices and external camera mounts, which reduce some advantages of these robots. These designs prevent the robot from squeezing through tight gaps, make it challenging to lift the robot tip against gravity, and require the robot to drag components against the environment. To address these limitations, we present a soft, pneumatically driven retraction device and an internal camera mount that are both lightweight and smaller than the diameter of the robot. The retraction device is composed of a soft, extending pneumatic actuator and a pair of soft clamping actuators that work together in an inch-worming motion. The camera mount sits inside the robot body and is kept at the tip of the robot by two low-friction interlocking components. We present characterizations of our retraction device and demonstrations that the robot can grow and retract through turns, tight gaps, and sticky environments while transmitting live video frommore »the tip. Our designs advance the ability of everting vine robots to navigate difficult terrain while collecting data.« less