Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, a distributed cooperative filtering strategy for state estimation has been developed for mobile sensor networks in a spatial–temporal varying field modeled by the advection–diffusion equation. Sensors are organized into distributed cells that resemble a mesh grid covering a spatial area, and estimation of the field value and gradient information at each cell center is obtained by running a constrained cooperative Kalman filter while incorporating the sensor measurements and information from neighboring cells. Within each cell, the finite volume method is applied to discretize and approximate the advection–diffusion equation. These approximations build the weakly coupled relationships between neighboring cells and define the constraints that the cooperative Kalman filters are subjected to. With the estimated information, a gradient-based formation control law has been developed that enables the sensor network to adjust formation size by utilizing the estimated gradient information. Convergence analysis has been conducted for both the distributed constrained cooperative Kalman filter and the formation control. Simulation results with a 9-cell 12-sensor network validate the proposed distributed filtering method and control law.more » « less
-
This paper proposes cooperative Kalman filters for distributed mobile sensor networks where the mobile sensors are organized into cells that resemble a mesh grid to cover a spatial area. The mobile sensor networks are deployed to map an underlying spatial-temporal field modeled by the Poisson equation. After discretizing the Poisson equation with finite volume method, we found that the cooperative Kalman filters for the cells are subjected to a set of distributed constraints. The field value and gradient information at each cell center can be estimated by the constrained cooperative Kalman filter using measurements within each cell and information from neighboring cells. We also provide convergence analysis for the distributed constrained cooperative Kalman filter. Simulation results with a five cell network validates the proposed distributed filtering method.more » « less