Abstract Determining the genetic architecture of traits involved in adaptation and speciation is one of the key components of understanding the evolutionary mechanisms behind biological diversification. Hybrid zones provide a unique opportunity to use genetic admixture to identify traits and loci contributing to partial reproductive barriers between taxa. Many studies have focused on the temporal dynamics of hybrid zones, but geographical variation in hybrid zones that span distinct ecological contexts has received less attention. We address this knowledge gap by analyzing hybridization and introgression between black-capped and Carolina chickadees in two geographically remote transects across their extensive hybrid zone, one located in eastern and one in central North America. Previous studies demonstrated that this hybrid zone is moving northward as a result of climate change but is staying consistently narrow due to selection against hybrids. In addition, the hybrid zone is moving ~5× slower in central North America compared to more eastern regions, reflecting continent-wide variation in the rate of climate change. We use whole genome sequencing of 259 individuals to assess whether variation in the rate of hybrid zone movement is reflected in patterns of hybridization and introgression, and which genes and genomic regions show consistently restricted introgression in distinct ecological contexts. Our results highlight substantial similarities between geographically remote transects and reveal large Z-linked chromosomal rearrangements that generate measurable differences in the degree of gene flow between transects. We further use simulations and analyses of climatic data to examine potential factors contributing to continental-scale nuances in selection pressures. We discuss our findings in the context of speciation mechanisms and the importance of sex chromosome inversions in chickadees and other species.
more »
« less
This content will become publicly available on October 1, 2025
Understanding species limits through the formation of phylogeographic lineages
Abstract The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well‐defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype‐environment interactions, and genome scans for selected loci. Employing these tests in eight lineage‐pairs of snakes in North America, we show that six pairs represent 12 “good” species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid‐Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.
more »
« less
- Award ID(s):
- 1831241
- PAR ID:
- 10560509
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.more » « less
-
Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.more » « less
-
Abstract The genetic dissection of reproductive barriers between diverging lineages provides enticing clues into the origin of species. One strategy uses linkage analysis in experimental crosses to identify genomic locations involved in phenotypes that mediate reproductive isolation. A second framework searches for genomic regions that show reduced rates of exchange across natural hybrid zones. It is often assumed that these approaches will point to the same loci, but this assumption is rarely tested. In this perspective, we discuss the factors that determine whether loci connected to postzygotic reproductive barriers in the laboratory are inferred to reduce gene flow in nature. We synthesize data on the genetics of postzygotic isolation in house mice, one of the most intensively studied systems in speciation genetics. In a rare empirical comparison, we measure the correspondence of loci tied to postzygotic barriers via genetic mapping in the laboratory and loci at which gene flow is inhibited across a natural hybrid zone. We find no evidence that the two sets of loci overlap beyond what is expected by chance. In light of these results, we recommend avenues for empirical and theoretical research to resolve the potential incongruence between the two predominant strategies for understanding the genetics of speciation.more » « less
-
Abstract Species that are geographically widespread may exist across environmentally heterogeneous landscapes that could influence patterns of occupation and phylogeographic structure. Previous studies have suggested that geographic range size should be positively correlated with niche breadth, allowing widespread species to sustain viable populations over diverse environmental gradients. We examined the congruence of phenotypic and phylogenetic divergence with the environmental factors that help maintain species level diversity in the geographically widespread hoary bats ( Lasiurus cinereus sensu lato) across their distribution. Genetic sequences were analyzed using multiple phylogenetic and species delimitation methods, and phenotypic data were analyzed using supervised and unsupervised machine learning approaches. Spatial data from environmental, geographic, and topographic features were analyzed in a multiple regression analysis to determine their relative effect on phenotypic diversity. Ecological niches of each hoary bat species were examined in environmental space to quantify niche overlap, equivalency, and the magnitude of niche differentiation. Phylogenetic and species delimitation analyses support existence of three geographically structured species of hoary bat, each of which is phenotypically distinct. However, the Hawaiian hoary bat is morphologically more similar to the South American species than to the North American species despite a closer phylogenetic relationship to the latter. Multiple regression and niche analyses revealed higher environmental similarities between the South American and Hawaiian species. Hoary bats thus exhibit a pattern of phenotypic variation that disagrees with well-supported genetic divergences, instead indicating phenotypic convergence driven by similar environmental features and relatively conserved niches occupied in tropical latitudes.more » « less