We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI may contribute to water mass modification and mesoscale energy dissipation in flow systems throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL‐MOM6 in
- Award ID(s):
- 1948953
- NSF-PAR ID:
- 10465850
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 52
- Issue:
- 10
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2273 to 2287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z * and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom‐ and surface‐intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear‐driven mixing on the representation of water mass transformation. We find that in isopycnal and low‐resolutionz * simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI‐driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals toward a balanced state. The potential energy extracted from the large‐scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move toward resolving mesoscale eddies and fronts but not the submesoscale phenomena they host. -
Observations on the lee of a topographic ridge show that the turbulence kinetic energy (TKE) dissipation rate due to shear instabilities is three orders of magnitude higher than the typical value in the open ocean. Laboratory-scale studies at low Reynolds number suggest that high turbulent dissipation occurs primarily within the core region of shear instabilities. However, field-scale studies indicate that high turbulence is mainly populated along the braids of shear instabilities. In this study, a high-resolution, resolving the Ozmidov-scale, non-hydrostatic model with Large Eddy Simulation (LES) turbulent closure is applied to investigate dominant mechanisms that control the spatial and temporal scales of shear instabilities and resulting mixing in stratified shear flow at high Reynolds number. The simulated density variance dissipation rate is elevated in the cusp-like bands of shear instabilities with a specific period, consistent with the acoustic backscatter taken by shipboard echo sounder. The vertical length scale of each cusp-like band is nearly half of the vertical length scale of the internal lee wave. However, it is consistent with instabilities originating from a shear layer based on linear stability theory. The model results indicate that the length scale and/or the period of shear instabilities are the key parameters to the mixing enhancement that increases with lateral Froude number Fr L , i.e. stronger shear and/or steeper ridge.more » « less
-
Abstract ABSTRACT: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography “hotspots”, where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger up-welling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model which approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation.more » « less
-
Abstract Bottom drag is believed to be one of the key mechanisms that remove kinetic energy from the ocean's general circulation. However, large uncertainty still remains in global estimates of bottom drag dissipation. One significant source of uncertainty comes from the velocity structures near the bottom where the combination of sloping topography and stratification can reduce the mean flow magnitude, and thus the bottom drag dissipation. Using high‐resolution numerical simulations, we demonstrate that previous estimates of bottom drag dissipation are biased high because they neglect velocity shear in the bottom boundary layer. The estimated bottom drag dissipation associated with geostrophic flows over the continental slopes is at least 56% smaller compared with prior estimates made using total velocities outside the near‐bottom layer. The diagnostics suggest the necessity of resolving the bottom boundary layer structures in coarse‐resolution ocean models and observations in order to close the global kinetic energy budget.
-
Abstract The submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500 m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia-gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10 −9 W/kg) versus the remaining 25% (1.12 × 10 −9 W/kg) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.more » « less