skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shear Instability and Turbulent Mixing in the Stratified Shear Flow Behind a Topographic Ridge at High Reynolds Number
Observations on the lee of a topographic ridge show that the turbulence kinetic energy (TKE) dissipation rate due to shear instabilities is three orders of magnitude higher than the typical value in the open ocean. Laboratory-scale studies at low Reynolds number suggest that high turbulent dissipation occurs primarily within the core region of shear instabilities. However, field-scale studies indicate that high turbulence is mainly populated along the braids of shear instabilities. In this study, a high-resolution, resolving the Ozmidov-scale, non-hydrostatic model with Large Eddy Simulation (LES) turbulent closure is applied to investigate dominant mechanisms that control the spatial and temporal scales of shear instabilities and resulting mixing in stratified shear flow at high Reynolds number. The simulated density variance dissipation rate is elevated in the cusp-like bands of shear instabilities with a specific period, consistent with the acoustic backscatter taken by shipboard echo sounder. The vertical length scale of each cusp-like band is nearly half of the vertical length scale of the internal lee wave. However, it is consistent with instabilities originating from a shear layer based on linear stability theory. The model results indicate that the length scale and/or the period of shear instabilities are the key parameters to the mixing enhancement that increases with lateral Froude number Fr L , i.e. stronger shear and/or steeper ridge.  more » « less
Award ID(s):
2128895
PAR ID:
10355953
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct numerical simulations are performed to compare the evolution of turbulent stratified shear layers with different density gradient profiles at a high Reynolds number. The density profiles include uniform stratification, two-layer hyperbolic tangent profile and a composite of these two profiles. All profiles have the same initial bulk Richardson number ( $$Ri_{b,0}$$ R i b , 0 ); however, the minimum gradient Richardson number and the distribution of density gradient across the shear layer are varied among the cases. The objective of the study is to provide a comparative analysis of the evolution of the shear layers in term of shear layer growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz billows, the transition to turbulence by secondary instabilities followed by the decay of turbulence. Comparison among the cases reveals that the amount of turbulent mixing varies with the density gradient distribution inside the shear layer. The minimum gradient Richardson number and the initial bulk Richardson number do not correlate well with the integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for fixed $$Ri_{b,0}$$ R i b , 0 is found to be highest in the case with two-layer density profile and lowest in the case with uniform stratification. However, the parameterizations of the flux coefficient based on buoyancy Reynolds number and the ratio of Ozmidov and Ellison scales show similar scaling in all cases. 
    more » « less
  2. Direct numerical simulations are performed to investigate a stratified shear layer at high Reynolds number ( $Re$ ) in a study where the Richardson number ( $Ri$ ) is varied among cases. Unlike previous work on a two-layer configuration in which the shear layer resides between two layers with constant density, an unbounded fluid with uniform stratification is considered here. The evolution of the shear layer includes a primary Kelvin–Helmholtz shear instability followed by a wide range of secondary shear and convective instabilities, similar to the two-layer configuration. During transition to turbulence, the shear layers at low $Ri$ exhibit a period of thickness contraction (not observed at lower $Re$ ) when the momentum and buoyancy fluxes are counter-gradient. The behaviour in the turbulent regime is significantly different from the case with a two-layer density profile. The transition layers, which are zones with elevated shear and stratification that form at the shear-layer edges, are stronger and also able to support a significant internal wave flux. After the shear layer becomes turbulent, mixing in the transition layers is shown to be more efficient than that which develops in the centre of the shear layer. Overall, the cumulative mixing efficiency ( $E^C$ ) is larger than the often assumed value of 1/6. Also, $E^C$ is found to be smaller than that in the two-layer configuration at moderate Ri . It is relatively less sensitive to background stratification, exhibiting little variation for $$0.08 \leqslant Ri \leqslant 0.2$$ . The dependence of mixing efficiency on buoyancy Reynolds number during the turbulence phase is qualitatively similar to homogeneous sheared turbulence. 
    more » « less
  3. Abstract This study presents field observations of fluid mud and the flow instabilities that result from the interaction between mud-induced density stratification and current shear. Data collected by shipborne and bottom-mounted instruments in a hyperturbid estuarine tidal channel reveal the details of turbulent sheared layers in the fluid mud that persist throughout the tidal cycle. Shear instabilities form during periods of intense shear and strong mud-induced stratification, particularly with gradient Richardson number smaller than or fluctuating around the critical value of 0.25. Turbulent mixing plays a significant role in the vertical entrainment of fine sediment over the tidal cycle. The vertical extent of the billows identified seen in the acoustic images is the basis for two useful parameterizations. First, the aspect ratio (billow height/wavelength) is indicative of the initial Richardson number that characterizes the shear flow from which the billows grew. Second, we describe a scaling for the turbulent dissipation rate ε that holds for both observed and simulated Kelvin–Helmholtz billows. Estimates for the present observations imply, however, that billows growing on a lutocline obey an altered scaling whose origin remains to be explained. 
    more » « less
  4. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  5. Well-resolved measurements of the small-scale dissipation statistics within turbulent channel flow are reported for a range of Reynolds numbers from $$Re_{{\it\tau}}\approx 500$$ to 4000. In this flow, the local large-scale Reynolds number based on the longitudinal integral length scale is found to poorly describe the Reynolds number dependence of the small-scale statistics. When a length scale based on Townsend’s attached-eddy hypothesis is used to define the local large-scale Reynolds number, the Reynolds number scaling behaviour was found to be more consistent with that observed in homogeneous, isotropic turbulence. The Reynolds number scaling of the dissipation moments up to the sixth moment was examined and the results were found to be in good agreement with predicted scaling behaviour (Schumacher et al. , Proc. Natl Acad. Sci. USA , vol. 111, 2014, pp. 10961–10965). The probability density functions of the local dissipation scales (Yakhot, Physica D, vol. 215 (2), 2006, pp. 166–174) were also determined and, when the revised local large-scale Reynolds number is used for normalization, provide support for the existence of a universal distribution which scales differently for inner and outer regions. 
    more » « less