Characterizing the ‘design-science gap’ in an engineering design-based laboratory unit in an introductory physics course for future engineers
- Award ID(s):
- 2021389
- PAR ID:
- 10465936
- Editor(s):
- Jones, D.L.
- Date Published:
- Journal Name:
- Physics Education Research Conference proceedings
- ISSN:
- 2377-2379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Blocked randomized designs are used to improve the precision of treatment effect estimates compared to a completely randomized design. A block is a set of units that are relatively homogeneous and consequently would tend to produce relatively similar outcomes if the treatment had no effect. The problem of finding the optimal blocking of the units into equal sized blocks of any given size larger than two is known to be a difficult problem—there is no polynomial time method guaranteed to find the optimal blocking. All available methods to solve the problem are heuristic methods. We propose methods that run in polynomial time and guarantee a blocking that is provably close to the optimal blocking. In all our simulation studies, the proposed methods perform better, create better homogeneous blocks, compared with the existing methods. Our blocking method aims to minimize the maximum of all pairwise differences of units in the same block. We show that bounding this maximum difference ensures that the error in the average treatment effect estimate is similarly bounded for all treatment assignments. In contrast, if the blocking bounds the average or sum of these differences, the error in the average treatment effect estimate can still be large in several treatment assignments.more » « less
-
Inspired by the allure of additive fabrication, we pose the problem of origami design from a different perspective: How can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this problem in two steps: by first identifying the geometric conditions for the compatible completion of two separate folds into a single developable fourfold vertex, and then showing how this foundation allows us to grow a geometrically compatible front at the boundary of a given folded seed. This yields a complete marching, or additive, algorithm for the inverse design of the complete space of developable quad origami patterns that can be folded from flat sheets. We illustrate the flexibility of our approach by growing ordered, disordered, straight, and curved-folded origami and fitting surfaces of given curvature with folded approximants. Overall, our simple shift in perspective from a global search to a local rule has the potential to transform origami-based metastructure design.more » « less
An official website of the United States government

