Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reform documents advocate for innovative pedagogical strategies to enhance student learning. A key innovation is the integration of science and engineering practices through engineering design (ED)-based physics laboratory tasks, where students tackle engineering design problems by applying physics principles. While this approach has its benefits, research shows that students do not always effectively apply scientific concepts, but instead rely on trial-and-error approaches, and end up their way to a solution. This leads to what is commonly referred to as the —that students do not always consciously apply science concepts while solving a design problem. However, as obvious as the notion of a may appear, there seems to exist no consensus on the definitions of and , further complicating the understanding of this gap. This qualitative study addresses the notion of the design-science gap by examining student groups’ discussions and written lab reports from a multiweek ED-based undergraduate introductory physics laboratory task. Building on our earlier studies, we developed and employed a nuanced, multilayered coding scheme inspired by the Gioia Framework to characterize and . We discuss how student groups engage in various aspects of design and how they apply physics concepts and principles to solve the problem. In the process, we demonstrate the interconnectedness of students’ design thinking and science thinking. We advocate for the usage of the term as opposed to to deepen both design and science thinking. Our findings offer valuable insights for educators in design-based science education.more » « less
-
Investigating students’ thinking in classroom tasks, particularly in science and engineering, is essential for improving educational practices and advancing student learning. In this context, the notion of (WoT) has gained traction in STEM education, offering a framework to explore how students approach and solve interdisciplinary problems. Building on our earlier studies and contributing to ongoing discussions on WoT frameworks, this paper introduces a new WoT framework—Ways of Thinking in Engineering Design-based Physics (WoT4EDP). WoT4EDP integrates five key elements—design, science, mathematics, metacognitive reflection, and computational thinking—within an undergraduate introductory physics laboratory. This novel framework highlights how these interconnected elements foster deeper learning and holistic problem solving in ED-based projects. A key takeaway is that this framework serves as a practical tool for educators and researchers to design, implement, and analyze interdisciplinary STEM activities in physics classrooms. We describe the development of WoT4EDP, situate it within undergraduate STEM education, and characterize its components in detail. Additionally, we compare WoT4EDP with two contemporary frameworks—Dalal (2021) and English (2023)—to glean insights that enhance its application and promote interdisciplinary thinking. This paper is the first of a two-part series. In the upcoming second part, we will demonstrate the application of the WoT4EDP framework, showcasing how it can be used to analyze student thinking in real-world, ED-based physics projects.more » « less
-
Computational thinking has widely been recognized as a crucial skill for engineers engaged in problem-solving. Multidisciplinary learning environments such as integrated STEM courses are powerful spaces where computational thinking skills can be cultivated. However, it is not clear the best ways to integrate computational thinking instruction or how students develop computational thinking in those spaces. Thus, we wonder: To what extent does engaging students in integrated engineering design and physics labs impact their development of computational thinking? We have incorporated engineering design within a traditional introductory calculus-based physics lab to promote students’ conceptual understanding of physics while fostering scientific inquiry, mathematical modeling, engineering design, and computational thinking. Using a generic qualitative research approach, we explored the development of computational thinking for six teams when completing an engineering design challenge to propose an algorithm to remotely control an autonomous guided vehicle throughout a warehouse. Across five consecutive lab sessions, teams represented their algorithms using a flowchart, completing four iterations of their initial flowchart. 24 flowcharts were open coded for evidence of four computational thinking facets: decomposition, abstraction, algorithms, and debugging. Our results suggest that students’ initial flowcharts focused on decomposing the problem and abstracting aspects that teams initially found to be more relevant. After each iteration, teams refined their flowcharts using pattern recognition, algorithm design, efficiency, and debugging. The teams would benefit from having more feedback about their understanding of the problem, the relevant physics concepts, and the logic and efficiency of the flowchartsmore » « less
An official website of the United States government

Full Text Available