This study examines low-temperature chemistry (LTC) enhancement by nanosecond dielectric barrier discharge (ns-DBD) plasma on a dimethyl ether (DME)/oxygen [Formula: see text] (Ar) premixture for deflagration-to-detonation transition (DDT) in a microchannel. It is found that non-equilibrium plasma generates active species and kinetically accelerates LTC of DME and DDT. In situ laser diagnostics and computational modeling examine the influence of the ns-DBDs on the LTC of DME and DDT using formaldehyde ([Formula: see text]) laser-induced fluorescence (LIF) and high-speed imaging. Firstly, high-speed imaging in combination with LIF is used to trace the presence of LTC throughout the flame front propagation and DDT. Then, competition between plasma-enhanced LTC of ignition and reduced heat release rate of combustion due to plasma-assisted partial fuel oxidation is studied with LIF. Observations of plasma-enhanced LTC effects on DDT are interpreted with the aid of detailed kinetic simulations. The results show that an appropriate number of ns-DBDs enhances LTC of DME and increases [Formula: see text] formation and low-temperature ignition, accelerating DDT. Moreover, it is found that, with many ns-DBDs, [Formula: see text] concentration decreases, indicating that excessive discharges may accelerate fuel oxidation in the premixture, reducing heat release and weakening shock–ignition coupling, inhibiting DDT.
more »
« less
Plasma thermal-chemical instability of low-temperature dimethyl ether oxidation in a nanosecond-pulsed dielectric barrier discharge
Abstract Plasma stability in reactive mixtures is critical for various applications from plasma-assisted combustion to gas conversion. To generate stable and uniform plasmas and control the transition towards filamentation, the underlying physics and chemistry need a further look. This work investigates the plasma thermal-chemical instability triggered by dimethyl-ether (DME) low-temperature oxidation in a repetitive nanosecond pulsed dielectric barrier discharge. First, a plasma-combustion kinetic mechanism of DME/air is developed and validated using temperature and ignition delay time measurements in quasi-uniform plasmas. Then the multi-stage dynamics of thermal-chemical instability is experimentally explored: the DME/air discharge was initially uniform, then contracted to filaments, and finally became uniform again before ignition. By performing chemistry modeling and analyzing the local thermal balance, it is found that such nonlinear development of the thermal-chemical instability is controlled by the competition between plasma-enhanced low-temperature heat release and the increasing thermal diffusion at higher temperature. Further thermal-chemical mode analysis identifies the chemical origin of this instability as DME low-temperature chemistry. This work connects experiment measurements with theoretical analysis of plasma thermal-chemical instability and sheds light on future chemical control of the plasma uniformity.
more »
« less
- Award ID(s):
- 2029425
- PAR ID:
- 10465966
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Plasma Sources Science and Technology
- Volume:
- 31
- Issue:
- 11
- ISSN:
- 0963-0252
- Page Range / eLocation ID:
- 114003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The present work improves a phenomenological plasma-assisted combustion model by integrating the spatiotemporal distribution of plasma power density, thereby considering the evolution of plasma streamers in the modeling, and subsequently, better predicting the ignition kernel evolution. The improved phenomenological model is validated against experiments representing the plasma discharge and post-discharge ignition kernel evolution. Specifically, the new model demonstrates a more accurate prediction of ultrafast gas heating and O2dissociation during the plasma discharge, compared to the original model. In addition, the new model is found to closely match the experimental pressure wave and heated channel profiles post-discharge without the need for tuning the energy deposition (unlike the original model), highlighting its accuracy of post-discharge ignition kernel dynamics. The improved phenomenological model is then employed to investigate ignition kernel evolution for a stoichiometric methane-air discharge across various discharge gap configurations. Simulations reveal a non-uniform temperature and streamer distribution progressing from the electrode tips toward the center, contrasting uniform cylindrical discharges previously described in the original model. Streamer propagation is observed to be faster for larger gaps when maintained at the same average electric field for different discharge gaps. The tendency of smaller gaps to produce detached toroidal ignition kernels is observed, while larger gaps promote cylindrical and attached ignition kernels. Interactions between successive ignition kernels from consecutive discharges varied significantly, with the smallest gap (1 mm) promoting the quenching of the preceding ignition kernel due to the initial kernel–kernel separation. The intermediate gap (2 mm) promotes detached kernel growth. In contrast, in the largest gap (4 mm), kernels consistently combine and expand attached to electrodes. The impact of homogeneous isotropic turbulence is also explored, showing the persistence of ignition kernels early on but eventually quenching due to enhanced radical and heat losses with pronounced turbulence intensity.more » « less
-
Many positive laboratory results that have been reported in which non-thermal plasmas, particularly repetitive nano second pulses, showed a reduction of ignition time delay and extension of flammability limits. However, there is a need for predictive models for designing practical systems. We present the results of a self-consistent model and simulation results of plasma assisted combustion of hydrogen air fuel mixture. The electrical discharge phase is modeled as a streamer discharge which is followed by the combustion kinetics phase. Nonequilibrium population of excited states leads to an increase in the reactivity and facilitates ignition and flame propagation. We have quantified some macroscopic properties of streamers such as radical production efficiency which will lead to the development of predictive tools. The concentration of radicals depends on the electrical energy density which is critical in determining ignition. We find that short duration streamers do not deposit enough energy to ignite hydrogen air mixtures. Also, the spatial and temporal electric energy density will influence the ignition delay and flame propagation velocity etc.more » « less
-
Laminar burning speed calculation at high pressures is challenging because of unstable surface conditions at large flame kernel diameters. It is therefore desired to take these measurements at small dimensions (i.e., during and immediately after the ignition discharge process) when the flame kernel is smooth and stable. Taking accurate measurements at these sizes is challenging because the kernel growth rate does not only depend on the chemical reaction but also on other phenomena such as energy discharge, as well as radiative and conductive energy losses. The effect of these events has not been adequately assessed, due to the generation of ionized gas (i.e., plasma). In order to better understand the effect of the ignition plasma in this work, spark ignition in air for 1–5 atm of pressure is studied. Understanding the ignition event and modeling its behavior is important to capture accurate combustion measurements at pressures pertinent to the advanced high-pressure engines and technologies. The relationship between the electrical energy supplied to the spark and the thermal energy dissipated within a gas mixture has been studied. This work relates the electrical discharge power to the volume of the ignition kernel measured via schlieren imagery. Voltage and current data are also captured as the input to a thermodynamic model which is used to predict the volume versus time data of the spark event. The model, which utilizes measured electrical power, thermodynamic properties of ionized air, and radiation losses in air show agreement with the experimental kernel measurements in terms of overall shape of the volume data within the measured kernel uncertainty. With these results and further experimental validation the present model is considered to represent the relationship between the electrical spark power and the measured ignition kernel volume. Future work will be done to determine inaccuracies present in the arc discharge regime as well as the effectiveness of the model in combustible media.more » « less
-
Pepiot, Perrine (Ed.)The Global Pathway Analysis (GPA) algorithm helps analyze the chemical kinetics of complex combustion systems by identifying important global reaction pathways connecting a source species to a sink species through various important intermediate species (i.e., hub species). The present work aims to extend GPA algorithm to plasma-assisted combustion and fuel reforming systems to identify the dominant global pathways in such systems at various conditions. In addition, the present study extends the ability of GPA algorithm to identify reaction cycles involving the excitation of high-concentration species (e.g., O2, N2, and fuel) to their vibrational and electronic states and the subsequent de-excitation to their ground state, based on their significance on the reactivity of plasma-assisted systems in terms of gas heating and radical production. Provisions are made in the GPA algorithm to evaluate the reactivity of identified reaction pathways and cycles based on the element-flux transfer (i.e., dominance), heat release, and radical production rate. The newly developed Plasma-based Global Pathway Analysis (PGPA) algorithm is then used to analyze the plasma-assisted combustion of ammonia and reforming of methane. The PGPA analyses elucidated the significance of vibrational-translational cycles on the reactivity of NH3/air mixtures. Further, analyses on the production of NO ascribed the early reforming of NH3 to N2 and H2 in impeding the production of NO during plasma-assisted NH3 ignition. Lastly, the enhanced reforming of CH4/N2 mixtures using plasma has been attributed to electron impact dissociation of CH4 when compared to thermal reforming. In contrast, conventional path-Flux analysis (PFA) was found to require significant manual effort and pre-analysis intuitions from expert knowledge, making it arduous to provide valuable insights into plasma chemistry. The user-friendly and automated nature of PGPA thus provides a valuable tool for assessing the kinetics of plasma-assisted systems helpful in analyzing and, further, a foundation in reducing plasma-assisted chemistry, without the needs of expert knowledge.more » « less