The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.
- Award ID(s):
- 1762581
- PAR ID:
- 10465984
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 142
- Issue:
- 3
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sapphire is an attractive material that stands to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating sapphire nanostructures by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach a femtosecond laser pulse is focused on the substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy. The irradiated regions are removed using a subsequent hydrofluoric acid etch. Laser confocal measurements quantify the degree of selective etching. The results indicate a threshold laser pulse intensity required for selective etching. This process was used to fabricate hierarchical sapphire nanostructures over large areas with enhanced hydrophobicity, with an apparent contact angle of 140 degrees, and a high roll-off angle, characteristic of the rose petal effect. Additionally, the structures have high broadband diffuse transmittance of up to 81.8% with low loss, with applications in optical diffusers. Our findings provide new insights into the interplay between the light-matter interactions, where Raman shifts associated with different vibrational modes can predict selective etching. These results advance sapphire nanostructure fabrication, with applications in infrared optics, protective windows, and consumer electronics.
-
Abstract The application high intensity ultrafast lasers to compact plasma-based electron accelerators has recently been an extremely active area of research. Here, for the first time, we show experimentally and theoretically that carefully sculpting an intense ultrafast pulse in the spatio-temporal domain allows ponderomotive pressure to be used for direct acceleration of electron bunches from rest to relativistic energies. With subluminal group velocity and above-threshold intensity, a laser pulse can capture and accelerate electrons, pushing on them like a snowplow. Acceleration of electrons from rest requires a substantial reduction of group velocity. In this demonstration experiment, we achieve a group velocity of ∼0.6c in a tilted pulse by focusing the output of a novel asymmetric pulse compressor we developed for the petawatt-class ALEPH system at Colorado State University. This direct laser-electron approach opens a route towards exploiting optical spatio-temporal control techniques to sculpt electron beams with desired properties such as narrow energy and angular distributions. The tilted-pulse snowplow technique can be scaled from small-scale to facility-scale amplifiers to produce short electron bunches in the 10 keV−10 MeV range for applications including ultrafast electron diffraction and efficient injection into laser wakefield accelerators for acceleration beyond the GeV level.
-
Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers.
-
Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However, until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone considerable development in the past decade, which includes revealing the underlying mechanism of pulse formation, the development of an ultrafast THz detection technique, and the invention of novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast pulse generation from QCLs in both the THz and MIR regimes.more » « less