skip to main content

Search for: All records

Award ID contains: 1762581

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lasers have a wide range of manufacturing applications, one of which is the bending of metals. While there are multiple ways to induce bending in metals with lasers, this paper examines laser peen forming with femtosecond lasers on thin metals of 75-micrometer thickness perpendicular to the laser. The effects of multiple parameters, including laser energy, scan speed, scan pitch, and material preparation, on the bend angle of the metal are investigated. The bend angles are generated in both concave and convex directions, represented by positive and negative angles, respectively. While it is possible to create angles ranging from 0 to 90 degrees in the concave direction, the largest average convex angle found was only −26.2 degrees. The positive angles were created by high overlapping ratios and slow speeds. Furthermore, the concave angles were made by a smaller range of values than the convex angles, although this range could be expanded by higher laser energy. The positive angles also had a higher inconsistency than the negative angles, with an average standard deviation of 6.8 degrees versus an average of 2.6 degrees, respectively. The characterization of bending angles will allow for more accurate predictions, which will benefit traditional metal forming applications and more advanced applications such as origami structures with metal.

    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
  4. Abstract With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed. 
    more » « less