skip to main content


Title: Electrical breakdown dynamics in an argon bubble submerged in conductive liquid for nanosecond pulsed discharges
Abstract

This study delves into the dynamics of cold atmospheric plasma and their interaction within conductive solutions under the unique conditions of nanosecond pulsed discharges (22 kV peak voltage, 10 ns FWHM, 4.5 kV ns−1rate-of-rise). The research focuses on the electrical response, breakdown, and discharge propagation in an argon bubble, submerged in a NaCl solution of varying conductivity. Full or partial discharges were observed at conductivities of 1.5µS cm−1(deionized water) to 1.6 mS cm−1, but no breakdown was observed at 11.0 mS cm−1when reducing the electrode gap. It is demonstrated that at higher conductivity electric breakdown is observed only when the gas bubble comes into direct contact with the electrode and multiple emission nodes were observed at different timescales. These nodes expanded in the central region of the bubble over timescales longer than the initial high-voltage pulse. This work offers a temporal resolution of 2 ns exposure times over the first 30 ns of the initial voltage pulse, and insight into plasma formation over decaying reflected voltage oscillations over 200 ns.

 
more » « less
Award ID(s):
2107901
NSF-PAR ID:
10466012
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
50
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 505202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode. 
    more » « less
  2. High voltage nanosecond pulse driven electric discharges in de-ionized water with an argon bubble suspended between two electrodes were experimentally investigated. Two electrode configurations were used to temporally resolve the time scales of the discharge from the applied voltage rise time (7 ns), through the end of the first pulse (∼30 ns), and longer (>50 ns). We found that, in positive and negative applied voltage polarities, discharge initiates in the water at the tip of the anode. The discharge in the water rapidly extends (∼104 m/s) to the apex of the bubble and light emitted from inside the bubble begins to form. The steep rate of rise of the applied voltage (dV/dt<4 kV/ns) and the short time for the development of discharge in the water suggest that cavitation is a likely mechanism for discharge initiation and propagation in water. In addition, the short duration of the applied voltage pulse results in only a partial Townsend discharge inside the bubble.

     
    more » « less
  3. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  4. Abstract

    Two dimensional arrays of streamer discharges were developed using electrical discharge machining of stainless steel sheets and stacking them together with spacers to allow gas flow between the sheets. A nanosecond pulsing circuit, capable of delivering 2–40 kV pulses with pulse widths of >20 ns by using two spark gaps as switches, was developed as a simple tunable pulsing power supply. High resolution imaging of the plasma for uniformity across the array tips was conducted. Optical emission spectroscopy was used to characterize the species created as well as probe the temperature of the discharge for various substrates, voltage pulse durations, voltage pulse magnitudes, and gas flows. The discharge properties were found to be substrate independent for a wide variety of conditions.

     
    more » « less
  5. High-voltage laser-triggered switches (HV-LTSs) are used in pulsed-power applications where low jitter and precise timing are required. The switches allow operation in the megaampere, megavolt regime while maintaining low insertion losses. Currently, there is a lack of detailed plasma measurements in these switches, yet such measurements are needed to elucidate the detailed physics, which include a range of processes such as laser breakdown, streamer formation and growth, current flow, plasma evolution, and cooling. Detailed spatially- and temporally resolved measurements of plasma properties within the switches could contribute to validating and advancing numeric models of these systems. This contribution presents laser Thomson scattering measurements of the electron number density and temperature evolution in a HV-LTS. The switch was operated at 6 kV with current flow for a duration of 145 ns and a peak current density of 0.2 MA/cm2 into a matched load. The Thomson scattering diagnostic system uses a 532 nm probe from an Nd:YAG laser allowing a temporal resolution of ∼10 ns. We find that during the switch current pulse, the plasma electron temperature rose from a starting value of 8.1 ± 1.6 eV (due to cooling of the earlier trigger laser plasma) to a peak value of 26 ± 5 eV with an associated increase in the electron density from 8.6 ± 1.7 × 1017 to 3.1 ± 0.6 × 1018 cm−3.

     
    more » « less