skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107901

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study delves into the dynamics of cold atmospheric plasma and their interaction within conductive solutions under the unique conditions of nanosecond pulsed discharges (22 kV peak voltage, 10 ns FWHM, 4.5 kV ns−1rate-of-rise). The research focuses on the electrical response, breakdown, and discharge propagation in an argon bubble, submerged in a NaCl solution of varying conductivity. Full or partial discharges were observed at conductivities of 1.5µS cm−1(deionized water) to 1.6 mS cm−1, but no breakdown was observed at 11.0 mS cm−1when reducing the electrode gap. It is demonstrated that at higher conductivity electric breakdown is observed only when the gas bubble comes into direct contact with the electrode and multiple emission nodes were observed at different timescales. These nodes expanded in the central region of the bubble over timescales longer than the initial high-voltage pulse. This work offers a temporal resolution of 2 ns exposure times over the first 30 ns of the initial voltage pulse, and insight into plasma formation over decaying reflected voltage oscillations over 200 ns. 
    more » « less
  2. Abstract The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations. 
    more » « less
  3. Abstract The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation. 
    more » « less
  4. As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are “equal” for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the “right plasma” at the “right dose” for each “disease system.” The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored. 
    more » « less
  5. High voltage nanosecond pulse driven electric discharges in de-ionized water with an argon bubble suspended between two electrodes were experimentally investigated. Two electrode configurations were used to temporally resolve the time scales of the discharge from the applied voltage rise time (7 ns), through the end of the first pulse (∼30 ns), and longer (>50 ns). We found that, in positive and negative applied voltage polarities, discharge initiates in the water at the tip of the anode. The discharge in the water rapidly extends (∼104 m/s) to the apex of the bubble and light emitted from inside the bubble begins to form. The steep rate of rise of the applied voltage (dV/dt<4 kV/ns) and the short time for the development of discharge in the water suggest that cavitation is a likely mechanism for discharge initiation and propagation in water. In addition, the short duration of the applied voltage pulse results in only a partial Townsend discharge inside the bubble. 
    more » « less
  6. Abstract Direct numerical simulation (DNS) is often used to uncover and highlight physical phenomena that are not properly resolved using other computational fluid dynamics methods due to shortcuts taken in the latter to cheapen computational cost. In this work, we use DNS along with interface tracking to take an in-depth look at bubble formation, departure, and ascent through water. To form the bubbles, air is injected through a novel orifice geometry not unlike that of a flute submerged underwater, which introduces phenomena that are not typically brought to light in conventional orifice studies. For example, our single-phase simulations show a significant leaning effect, wherein pressure accumulating at the trailing nozzle edges leads to asymmetric discharge through the nozzle hole and an upward bias in the flow in the rest of the pipe. In our two-phase simulations, this effect is masked by the surface tension of the bubble sitting on the nozzle, but it can still be seen following departure events. After bubble departure, we observe the bubbles converge toward an ellipsoidal shape, which has been validated by experiments. As the bubbles rise, we note that local variations in the vertical velocity cause the bubble edges to flap slightly, oscillating between relatively low and high velocities at the edges. 
    more » « less