Wetlands are dynamic environments where aquatic organisms are affected by both predictable and unpredictable changes in hydrology. Understanding how abundant large-bodied predators respond to these changes is especially important in context of wetland restoration. We used satellite telemetry to investigate how individual (e.g., sex, size, body condition) and environmental factors influenced movement behaviors of American Alligators [Alligator mississippiensis (Daudin, 1801)] in a managed freshwater marsh ecosystem of the Florida Everglades. We quantified space use, movement activity, and habitat selection of animals (n = 18) across hydrological seasons and the breeding period and performed stable isotope analyses to infer seasonal dietary changes. Though individual animals did not change space use across seasons, movement activity was lower for some individuals and δ15 Nitrogen isotopic values were higher in the dry season possibly reflecting greater foraging opportunities when marsh dry down concentrates prey. Alligators may be using canals as foraging sites which have abundant prey year-round and shallow sawgrass habitats as spots for basking. Based on our findings, ongoing restoration of water inflow will likely change the distribution and movement behavior of alligators.
more »
« less
Golf course living leads to a diet shift for American alligators
Abstract Human‐driven land use change can fundamentally alter ecological communities, especially the diversity and abundance of large‐bodied predators. Yet, despite the important roles large‐bodied predators play in structuring communities through feeding, there have been only a few investigations of how the feeding patterns of large‐bodied predators change in human‐dominated landscapes. One group of large‐bodied predators that has been largely overlooked in the context of land use change is the crocodilians. To help fill these gaps, we studied the feeding patterns of juvenile American alligators (Alligator mississippiensis) on neighboring barrier islands on the southeast coast of Georgia, USA. Jekyll Island has multiple golf courses and substantial amounts of human activity, while Sapelo Island does not have any golf courses and a much smaller amount of human activity. We found that juvenile alligator populations on both islands ate the same types of prey but in vastly different quantities. Sapelo Island alligators primarily consumed crustaceans while alligators that lived on Jekyll Island's golf courses ate mostly insects/arachnids. Furthermore, the Jekyll Island alligators exhibited a much more generalist feeding pattern (individuals mostly ate the same types of prey in the same quantities) than the more specialized Sapelo Island alligators (diets were more varied across individuals). The most likely explanation for our results is that alligators living on golf courses have different habitat use patterns and have access to different prey communities relative to alligators in more natural habitats. Thus, land use change can strongly alter the feeding patterns of large‐bodied predators and, as a result, may affect their body condition, exposure to human‐made chemicals, and role within ecological communities.
more »
« less
- Award ID(s):
- 1852488
- PAR ID:
- 10466071
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness.more » « less
-
Abstract The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.more » « less
-
ABSTRACT Comparing patterns of performance and kinematics across behavior, development and phylogeny is crucial to understand the evolution of complex musculoskeletal systems such as the feeding apparatus. However, conveying 3D spatial data of muscle orientation throughout a feeding cycle, ontogenetic pathway or phylogenetic lineage is essential to understanding the function and evolution of the skull in vertebrates. Here, we detail the use of ternary plots for displaying and comparing the 3D orientation of muscle data. First, we illustrate changes in 3D jaw muscle resultants during jaw closing taxa the American alligator (Alligator mississippiensis). Second, we show changes in 3D muscle resultants of jaw muscles across an ontogenetic series of alligators. Third, we compare 3D resultants of jaw muscles of avian-line dinosaurs, including extant (Struthio camelus, Gallus gallus, Psittacus erithacus) and extinct (Tyrannosaurus rex) species to outline the reorganization of jaw muscles that occurred along the line to modern birds. Finally, we compare 3D resultants of jaw muscles of the hard-biting species in our sample (A. mississippiensis, T. rex, P. erithacus) to illustrate how disparate jaw muscle resultants are employed in convergent behaviors in archosaurs. Our findings show that these visualizations of 3D components of jaw muscles are immensely helpful towards identifying patterns of cranial performance, growth and diversity. These tools will prove useful for testing other hypotheses in functional morphology, comparative biomechanics, ecomorphology and organismal evolution.more » « less
-
Abstract Cranial nerves are key features of the nervous system and vertebrate body plan. However, little is known about the anatomical relationships and ontogeny of cranial nerves in crocodylians and other reptiles, hampering understanding of adaptations, evolution, and development of special senses, somatosensation, and motor control of cranial organs. Here we share three dimensional (3D) models an of the cranial nerves and cranial nerve targets of embryonic, juvenile, and adult American Alligators (Alligator mississippiensis) derived from iodine‐contrast CT imaging, for the first time, exploring anatomical patterns of cranial nerves across ontogeny. These data reveal the tradeoffs of using contrast‐enhanced CT data as well as patterns in growth and development of the alligator cranial nervous system. Though contrast‐enhanced CT scanning allows for reconstruction of numerous tissue types in a nondestructive manner, it is still limited by size and resolution. The position of alligator cranial nerves varies little with respect to other cranial structures yet grow at different rates as the skull elongates. These data constrain timing of trigeminal and sympathetic ganglion fusion and reveal morphometric differences in nerve size and path during growth. As demonstrated by these data, alligator cranial nerve morphology is useful in understanding patterns of neurological diversity and distribution, evolution of sensory and muscular innervation, and developmental homology of cranial regions, which in turn, lead to inferences of physiology and behavior.more » « less
An official website of the United States government
