skip to main content


Title: Golf course living leads to a diet shift for American alligators
Abstract

Human‐driven land use change can fundamentally alter ecological communities, especially the diversity and abundance of large‐bodied predators. Yet, despite the important roles large‐bodied predators play in structuring communities through feeding, there have been only a few investigations of how the feeding patterns of large‐bodied predators change in human‐dominated landscapes. One group of large‐bodied predators that has been largely overlooked in the context of land use change is the crocodilians. To help fill these gaps, we studied the feeding patterns of juvenile American alligators (Alligator mississippiensis) on neighboring barrier islands on the southeast coast of Georgia, USA. Jekyll Island has multiple golf courses and substantial amounts of human activity, while Sapelo Island does not have any golf courses and a much smaller amount of human activity. We found that juvenile alligator populations on both islands ate the same types of prey but in vastly different quantities. Sapelo Island alligators primarily consumed crustaceans while alligators that lived on Jekyll Island's golf courses ate mostly insects/arachnids. Furthermore, the Jekyll Island alligators exhibited a much more generalist feeding pattern (individuals mostly ate the same types of prey in the same quantities) than the more specialized Sapelo Island alligators (diets were more varied across individuals). The most likely explanation for our results is that alligators living on golf courses have different habitat use patterns and have access to different prey communities relative to alligators in more natural habitats. Thus, land use change can strongly alter the feeding patterns of large‐bodied predators and, as a result, may affect their body condition, exposure to human‐made chemicals, and role within ecological communities.

 
more » « less
Award ID(s):
1852488
NSF-PAR ID:
10466071
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
9
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wetlands are dynamic environments where aquatic organisms are affected by both predictable and unpredictable changes in hydrology. Understanding how abundant large-bodied predators respond to these changes is especially important in context of wetland restoration. We used satellite telemetry to investigate how individual (e.g., sex, size, body condition) and environmental factors influenced movement behaviors of American Alligators [Alligator mississippiensis (Daudin, 1801)] in a managed freshwater marsh ecosystem of the Florida Everglades. We quantified space use, movement activity, and habitat selection of animals (n = 18) across hydrological seasons and the breeding period and performed stable isotope analyses to infer seasonal dietary changes. Though individual animals did not change space use across seasons, movement activity was lower for some individuals and δ15 Nitrogen isotopic values were higher in the dry season possibly reflecting greater foraging opportunities when marsh dry down concentrates prey. Alligators may be using canals as foraging sites which have abundant prey year-round and shallow sawgrass habitats as spots for basking. Based on our findings, ongoing restoration of water inflow will likely change the distribution and movement behavior of alligators. 
    more » « less
  2. Abstract

    Understanding dietary nutrient sources is fundamental to conserving sensitive species, especially as climate change alters food web dynamics. Migratory species that depend on both marine and terrestrial habitats face unique challenges, as the locations and quality of resources in the two realms may respond quite differently to environmental changes, with potential for spatial and temporal carryover effects. For sea ducks (Mergini) that winter at sea but move inland to breed, body size may determine their capacity to store nutrient reserves for later use in alternative habitats. We assessed ultimate sources of protein for reproduction in four sea duck species in northern Alaska: smaller‐bodied Long‐tailed Ducks and Steller's Eiders (Clangula hyemalisandPolysticta stelleri), and larger‐bodied Spectacled and King Eiders (Somateria fischeriandSomateria spectabilis). To assess the relative use of local freshwater foods vs. marine protein for both egg production and body maintenance of incubating females, we measured stable isotopes of carbon and nitrogen in egg membranes, red blood cells, marine and freshwater invertebrates, and vegetation. For egg production, isotope mixing models indicated that proteinaceous egg membranes of all four species were derived mostly (89%–95%) from freshwater foods on the breeding grounds, with broad individual variation in specific prey types selected by the larger species. For incubation, isotopes in red blood cells indicated that body maintenance of females also relied mainly (87%–91%) on freshwater foods in Long‐tailed Ducks and Steller's Eiders. However, incubating Spectacled and King Eiders obtained only about 60% of their protein from freshwater foods and the remainder from marine‐derived body tissues. The latter strategy allows the larger‐bodied species to incubate almost continuously, whereas the smaller species must take more frequent incubation breaks and generally incur higher rates of predation on eggs. Thus, depending on body size, cross‐seasonal effects of feeding conditions in marine habitats may strongly influence population processes well after the birds move to inland nesting sites. Although conservation programs on land and sea are often researched, planned, and administered by different agencies and organizations, our results emphasize the need to coordinate marine and land‐based efforts for species that integrate conditions across both environments.

     
    more » « less
  3. Living hyenas are infamous for crushing the bones of their prey to extract the nutritious marrow inside. This feeding ability is rare today, and African and Asian hyenas, particularly the spotted hyena, are the only true ‘bone-crackers’ in our modern ecosystems. Yet, between 16 to 2 million years ago, the common, but now extinct North American dogs also crushed bone. Their skeletal features – such as highly robust skulls and jaws, teeth to withstand high stress, and large muscle-attachment areas for a powerful bite –share many similarities with the spotted hyena. It is therefore likely that these extinct North American dogs played a similar role in the ecosystem as living hyenas do now. The last of these bone-cracking dogs, Borophagus, vanished approximately 2 million years ago. In a recent study in 2018, researchers discovered fossilized feces, also known as coprolites, which presumably belong to Borophagus parvus that lived in central California between 5 to 6 million years. These coprolites preserve ingested bone and so provide more evidence of what this species of dogs ate. Now, Wang et al. – including some of the researchers involved in the previous study – analyzed the fossil coprolites and their ingredients in great detail using computer tomography, measurements and comparisons with living predators and their prey. The results show that Borophagus parvus weighed around 24 kg and hunted large prey of 35 kg up to 100 kg: the size of a living mule deer. Its skull structure was similar to the spotted hyena, but its digestive system resembled that of striped and brown hyenas. Spotted hyenas have chalk white feces containing digested bone matter, presumably due to a highly acidic digestive system, but the coprolites of Borophagus contained undissolved bones (which they ate regularly). Wang et al. also discovered that these dogs dropped feces in clusters, which is how the spotted hyena and wolves mark territory. This suggests that Borophagus were also social animals. Bone-crackers (modern and extinct) act as apex predators and providers of free organic material needed for decomposition, which are essential roles for maintaining a healthy ecosystem. The extinction of Borophagus likely modified the dynamics of the food web over the past few million years. It remains unclear why this way of feeding is absent in all living animals of North America. Future studies could investigate how the disappearance of Borophagus may have influenced the establishment of modern environments, eventually setting the scene for human habitation of the continent. 
    more » « less
  4. Outdoor recreation benefits local economies, environmental education, and public health and wellbeing, but it can also adversely affect local ecosystems. Human presence in natural areas alters feeding and reproductive behaviors, physiology, and population structure in many wildlife species, often resulting in cascading effects through entire ecological communities. As outdoor recreation gains popularity, existing trails are becoming overcrowded and new trails are being built to accommodate increasing use. Many recreation impact studies have investigated effects of the presence or absence of humans while few have investigated recreation effects on wildlife using a gradient of disturbance intensity. We used camera traps to quantify trail use by humans and mid- to large-sized mammals in an area of intense outdoor recreation–the Upper East River Valley, Colorado, USA. We selected five trails with different types and intensities of human use and deployed six cameras on each trail for five weeks during a COVID-enhanced 2020 summer tourism season. We used occupancy models to estimate detectability and habitat use of the three most common mammal species in the study area and determined which human activities affect the habitat use patterns of each species. Human activities affected each species differently. Mule deer (Odocoileus hemionus) tended to use areas with more vehicles, more predators, and greater distances from the trailhead, and they were more likely to be detected where there were more bikers. Coyotes (Canis latrans) and red foxes (Vulpes vulpes) were most likely to use areas where their prey species occurred, and foxes were more likely to be detected where the vegetation was shorter. Humans and their recreational activities differentially influence different species. More generally, these results reinforce that it is unlikely that a single management policy is suitable for all species and management should thus be tailored for each target species.

     
    more » « less
  5. null (Ed.)
    Background Prey can alter their behavior when detecting predator cues. Little is known about which sensory channel, number of channels, or the interaction among channels that shrimp species use to evaluate the threat from predators. The amphidromous shrimp Xiphocaris elongata has an induced defense, an elongated rostrum, where predatory fishes are present. We sought to test if kairomones or visual cues when presented singly from fish either eating flakes or shrimp, had more effect on altering the temporal feeding and refuge use patterns of long-rostrum (LR) X. elongata . We were also interested in elucidating potential interactions among cues when presented simultaneously in different combinations (kairomones + visual + mechanosensory, kairomones + alarm + visual, kairomones + alarm, kairomones + visual) on the same response variables. We expected that when presented alone kairomones will significantly increase refuge use and decrease foraging, particularly late at night, in comparison to visual cues alone, and that multiple cues when presented simultaneously will further increase refuge use and decrease foraging at night. Methods We exposed shrimp to individual or multiple cues from the predatory fish mountain mullet, Augonostomus monticola . We examined shrimp behavior with respect to refuge use and foraging activity during four time periods (after sunset, nighttime, sunrise, and sunset) in a 24-hour period. Results Shrimp presented fish visual and chemical cues singly did not differ from one another but differed from control shrimp (no cues) with respect to refuge use or foraging. The number of shrimp using refuge in the treatment with most cues (KVM: kairomones+ visual + mechanosensory) was higher than in all the treatments with less cues. A significant decline in foraging was observed when multiple cues were presented simultaneously. The highest number of shrimp foraged one hour after sunset and at nighttime. A significant interaction was observed between cue treatments and time periods, with shrimp in the KVM treatment foraging less and using more refuge late at night and at sunrise than shrimp in other treatments or time periods. Conclusions The observation that fish chemical and visual cues when presented singly produced similar refuge use and foraging patterns was contrary to expectation and suggests that visual and chemical cues, when presented alone, provide redundant information to X. elongata with regards to predation threat. The significant increase in refuge use and reduction in foraging observed in the KVM treatment suggest multimodal signal enhancement in the perception of threat. This makes evolutionary sense in “noisy” environments, such as streams, where detection, localization, and intention of predators is much improved when cues are received through multiple sensory channels. 
    more » « less