skip to main content


Title: Effects of hydrology on the movements of a large-bodied predator in a managed freshwater marsh
Wetlands are dynamic environments where aquatic organisms are affected by both predictable and unpredictable changes in hydrology. Understanding how abundant large-bodied predators respond to these changes is especially important in context of wetland restoration. We used satellite telemetry to investigate how individual (e.g., sex, size, body condition) and environmental factors influenced movement behaviors of American Alligators [Alligator mississippiensis (Daudin, 1801)] in a managed freshwater marsh ecosystem of the Florida Everglades. We quantified space use, movement activity, and habitat selection of animals (n = 18) across hydrological seasons and the breeding period and performed stable isotope analyses to infer seasonal dietary changes. Though individual animals did not change space use across seasons, movement activity was lower for some individuals and δ15 Nitrogen isotopic values were higher in the dry season possibly reflecting greater foraging opportunities when marsh dry down concentrates prey. Alligators may be using canals as foraging sites which have abundant prey year-round and shallow sawgrass habitats as spots for basking. Based on our findings, ongoing restoration of water inflow will likely change the distribution and movement behavior of alligators.  more » « less
Award ID(s):
2025954 1832229 1237517
NSF-PAR ID:
10311132
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrobiologia
ISSN:
0018-8158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Global increases in human activity threaten connectivity of animal habitat and populations. Protection and restoration of wildlife habitat and movement corridors require robust models to forecast the effects of human activity on movement behaviour, resource selection, and connectivity. Recent research suggests that animal resource selection and responses to human activity depend on their behavioural movement state, with increased tolerance for human activity in fast states of movement. Yet, few studies have incorporated state-dependent movement behaviour into analyses of Merriam connectivity, that is individual-based metrics of connectivity that incorporate landscape structure and movement behaviour. Methods We assessed the cumulative effects of anthropogenic development on multiple movement processes including movement behaviour, resource selection, and Merriam connectivity. We simulated movement paths using hidden Markov movement models and step selection functions to estimate habitat use and connectivity for three landscape scenarios: reference conditions with no anthropogenic development, current conditions, and future conditions with a simulated expansion of towns and recreational trails. Our analysis used 20 years of grizzly bear ( Ursus arctos ) and gray wolf ( Canis lupus ) movement data collected in and around Banff National Park, Canada. Results Carnivores increased their speed of travel near towns and areas of high trail and road density, presumably to avoid encounters with people. They exhibited stronger avoidance of anthropogenic development when foraging and resting compared to travelling and during the day compared to night. Wolves exhibited stronger avoidance of anthropogenic development than grizzly bears. Current development reduced the amount of high-quality habitat between two mountain towns by more than 35%. Habitat degradation constrained movement routes around towns and was most pronounced for foraging and resting behaviour. Current anthropogenic development reduced connectivity from reference conditions an average of 85%. Habitat quality and connectivity further declined under a future development scenario. Conclusions Our results highlight the cumulative effects of anthropogenic development on carnivore movement behaviour, habitat use, and connectivity. Our strong behaviour-specific responses to human activity suggest that conservation initiatives should consider how proposed developments and restoration actions would affect where animals travel and how they use the landscape. 
    more » « less
  2. Over a quarter of the world’s land surface is grazed by cattle and other livestock, which are replacing wild herbivores and widely regarded as drivers of global biodiversity declines. The effects of livestock presence versus absence on wild herbivores are well documented. However, the environmental context-specific effects of cattle stocking rate on biodiversity and livestock production are poorly understood, precluding nuanced rangeland management recommendations. To address this, we used a long term exclosure experiment in a semi-arid savanna ecosystem in central Kenya that selectively excludes cattle (at different stocking rates), wild mesoherbivores, and megaherbivores. We investigated the individual and interactive effects of cattle stocking rate (zero/moderate/high) and megaherbivore (>1,000 kg) accessibility on habitat use (measured as dung density) by two dominant wild mesoherbivores (50–1,000 kg; zebra Equus quagga and eland Taurotragus oryx ) across the “wet” and “dry” seasons. To explore potential tradeoffs or co-benefits between cattle production and wildlife conservation, we tested for individual and interactive effects of cattle stocking rate and accessibility by wild mesoherbivores and megaherbivores (collectively, large wild herbivores) on the foraging efficiency of cattle across both seasons. Eland habitat use was reduced by cattle at moderate and high stocking rates across both dry and wet seasons and regardless of megaherbivore accessibility. We observed a positive effect of megaherbivores on zebra habitat use at moderate, but not high, stocking rates. Cattle foraging efficiency (g dry matter step –1 min –1 ) was lower in the high compared to moderate stocking rate treatments during the dry season, and was non-additively reduced by wild mesoherbivores and high cattle stocking rates during the wet season. These results show that high stocking rates are detrimental to wild mesoherbivore habitat use and cattle foraging efficiency, while reducing to moderate stocking rates can benefit zebra habitat use and cattle foraging efficiency. Our findings demonstrate that ecosystem management and restoration efforts across African rangelands that involve reducing cattle stocking rates may represent a win-win for wild herbivore conservation and individual performance of livestock. 
    more » « less
  3. The patchy nature of landscapes drives variation in the extent of ecological processes across space. This spatial ecology is critical to our understanding of organism-environmental interactions and conservation, restoration, and resource management efforts. In fisheries, incorporation of the spatial ecology of fishes remains limited, despite its importance to fishery assessment and management. This study quantified the effects of variation in headwater river stage, as an indicator of freshwater inflow, on the distribution and movement of a valuable recreational fishery species in Florida, common snook (Centropomus undecimalis). The hypothesis tested was that variation in river stage caused important habitat shifts and changes in the movement behavior of Snook. A combination of electrofishing and acoustic telemetry was used to quantify the distribution and movement patterns of snook in the upper Shark River Estuary, Everglades National Park. Negative relationships with river stage were found for all three variables measured: electrofishing catch per unit effort, the proportion of detections by upstream acoustic receivers, and movement rates. Snook were up to 5.8 times more abundant, were detected 2.3 times more frequently, and moved up to 4 times faster at lower river stages associated with seasonal drawdowns in water level. These findings show how seasonal drawdowns result in local aggregations of consumers, largely driven by improved foraging opportunities, and emphasize the importance of maintaining the natural variance in managed hydrological regimes. Results also highlight the importance of understanding the nature of flow-ecology relationships, especially given projected changes in freshwater availability with climate change. 
    more » « less
  4. Abstract

    Acoustic communication allows animals to coordinate and optimize resource utilization in space.Cardioderma cor, the heart‐nosed bat, is one of the few species of bats known to sing during nighttime foraging. Previous research found that heart‐nosed bats react aggressively to song playback, supporting the territorial defense hypothesis of singing in this species. We further investigated the territorial defense hypothesis from an ecological standpoint, which predicts that singing should be associated with exclusive areas containing a resource, by tracking 14 individuals nightly during the dry seasons in Tanzania. We quantified the singing behavior of individuals at all perches used throughout the night. Using home range analysis tools, we quantified overall use, night ranges and singing ranges, as well as areas used in early and later time periods at night. Males sang back and forth from small ( = 3.48 ± 2.71 ha), largely exclusive areas that overlapped with overall night ranges used for gleaning prey. Individuals varied in singing effort; however, all sang significantly more as night progressed. Subsequently, areas used earlier at night and overall use areas were both larger than singing areas. Individuals varied in singing strategies. Some males sang for long periods in particular trees and had smaller core areas, while others moved frequently among singing trees. The most prolific singers used more perches overall. Our results support the hypothesis that acoustic communication repertoires evolved in support of stable foraging territory advertisement and defense in some bats.

     
    more » « less
  5. Abstract

    Human‐driven land use change can fundamentally alter ecological communities, especially the diversity and abundance of large‐bodied predators. Yet, despite the important roles large‐bodied predators play in structuring communities through feeding, there have been only a few investigations of how the feeding patterns of large‐bodied predators change in human‐dominated landscapes. One group of large‐bodied predators that has been largely overlooked in the context of land use change is the crocodilians. To help fill these gaps, we studied the feeding patterns of juvenile American alligators (Alligator mississippiensis) on neighboring barrier islands on the southeast coast of Georgia, USA. Jekyll Island has multiple golf courses and substantial amounts of human activity, while Sapelo Island does not have any golf courses and a much smaller amount of human activity. We found that juvenile alligator populations on both islands ate the same types of prey but in vastly different quantities. Sapelo Island alligators primarily consumed crustaceans while alligators that lived on Jekyll Island's golf courses ate mostly insects/arachnids. Furthermore, the Jekyll Island alligators exhibited a much more generalist feeding pattern (individuals mostly ate the same types of prey in the same quantities) than the more specialized Sapelo Island alligators (diets were more varied across individuals). The most likely explanation for our results is that alligators living on golf courses have different habitat use patterns and have access to different prey communities relative to alligators in more natural habitats. Thus, land use change can strongly alter the feeding patterns of large‐bodied predators and, as a result, may affect their body condition, exposure to human‐made chemicals, and role within ecological communities.

     
    more » « less