skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supersymmetry of the D3/D5 defect field theory
A bstract Four-dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills, with a codimension-one defect breaking half of the supersymmetry, arises as the field theory description of the D3/D5 intersection in the holographic limit. This is one of the earliest, most extensively studied, and commonly used systems in holography. In this note we give the full R-symmetry-covariant supersymmetry variations for this system. We also provide the supercurrents and compute the algebra of the corresponding supercharges, obtaining the full set of central charges. We show that magnetically charged finite-energy field configurations preserving half of the supersymmetry are solutions to a new form of the extended Bogomolny equations, in which the defect fields play the role of jumping data for the Nahm-like part of the equations. In the appendices, we explain the connection between our results and the superspace-based formulations in the literature.  more » « less
Award ID(s):
2014025
PAR ID:
10466095
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We construct a pseudo-Lagrangian that is invariant under rigid E 11 and transforms as a density under E 11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E 11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E 11 -representation together with the E 11 coset fields. We show that, in combination with gauge-invariant and E 11 -invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E 8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E 10 sigma model. 
    more » « less
  2. null (Ed.)
    A bstract We use holography to study codimension-2 surface defects in 5d SCFTs engineered by ( p , q ) 5-brane webs. The three-dimensional defects are realized by D3-branes ending on the brane web. We identify the holographic representation of the defects in Type IIB AdS 6 solutions as probe D3-branes, and study conformal and non-conformal defects which, respectively, preserve one half and one quarter of the supersymmetry. For a sample of 5d SCFTs, including the T N theories, we provide explicit solutions for conformal and non-conformal defects. For the conformal defects we obtain their contribution to the free energy on S 5 . 
    more » « less
  3. A bstract We study monodromy defects in O ( N ) symmetric scalar field theories in d dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on S 1 × H d− 1 , where H d− 1 is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along S 1 . In this description, the codimension two defect lies at the boundary of H d− 1 . We first study the general monodromy defect in the free field theory, and then develop the large N expansion of the defect in the interacting theory, focusing for simplicity on the case of N complex fields with a one-parameter monodromy condition. We also use the ϵ -expansion in d = 4 − ϵ , providing a check on the large N approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on S 1 × H d− 1 . It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RG flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the low-lying Kaluza-Klein modes on H d− 1 . We also show that, adapting standard techniques from the AdS/CFT literature, the S 1 × H d− 1 setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including one-point functions of bulk operators, scaling dimensions of defect operators, and four-point functions of operator insertions on the defect. 
    more » « less
  4. A<sc>bstract</sc> We study anO(N) invariant surface defect in the Wilson-Fisher conformal field theory (CFT) ind= 4 –ϵdimensions. This defect is defined by mass deformation on a two-dimensional surface that generates localized disorder and is conjectured to factorize into a pair of ordinary boundary conditions ind= 3. We determine defect CFT data associated with the lightestO(N) singlet and vector operators up to the third order in theϵ-expansion, find agreements with results from numerical methods and provide support for the factorization proposal ind= 3. Along the way, we observe surprising non-renormalization properties for surface anomalous dimensions and operator-product-expansion coefficients in theϵ-expansion. We also analyze the full conformal anomalies for the surface defect. 
    more » « less
  5. A bstract We initiate a study of the holographic duals of a class of four-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories that are engineered by wrapping M5-branes on a sphere with an irregular puncture. These notably include the strongly-coupled field theories of Argyres-Douglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of AdS 5 and a “half-spindle.” The irregular puncture is modeled by a localized M5-brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stückelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2-branes, and matching these with the dual Argyres-Douglas field theories. Furthermore, we compute the large- N ’t Hooft anomalies of the field theories using anomaly inflow methods in M-theory, and find perfect agreement with the proposed duality. 
    more » « less