A bstract There is a rich connection between classical errorcorrecting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum errorcorrecting codes, those of the stabilizer type, are related to Lorentzian lattices and nonchiral CFTs. More specifically, real selfdual stabilizer codes can be associated with even selfdual Lorentzian lattices, and thus define Narain CFTs. We dub the resulting theories code CFTs and study their properties. Tduality transformations of a code CFT, at the level of the underlying code, reduce to code equivalences. By means of such equivalences, any stabilizer code can be reduced to a graph code. We can therefore represent code CFTs by graphs. We study code CFTs with small central charge c = n ≤ 12, and find many interesting examples. Among them is a nonchiral E 8 theory, which is based on the root lattice of E 8 understood as an even selfdual Lorentzian lattice. By analyzing all graphs with n ≤ 8 nodes we find many pairs and triples of physically distinct isospectral theories. We also construct numerous modular invariant functions satisfying all the basic properties expected of the CFT partition function, yet which are not partition functions of any known CFTs. Wemore »
M5brane sources, holography, and ArgyresDouglas theories
A bstract We initiate a study of the holographic duals of a class of fourdimensional $$ \mathcal{N} $$ N = 2 superconformal field theories that are engineered by wrapping M5branes on a sphere with an irregular puncture. These notably include the stronglycoupled field theories of ArgyresDouglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of AdS 5 and a “halfspindle.” The irregular puncture is modeled by a localized M5brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stückelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2branes, and matching these with the dual ArgyresDouglas field theories. Furthermore, we compute the large N ’t Hooft anomalies of the field theories using anomaly inflow methods in Mtheory, and find perfect agreement with the proposed duality.
 Publication Date:
 NSFPAR ID:
 10311171
 Journal Name:
 Journal of High Energy Physics
 Volume:
 2021
 Issue:
 11
 ISSN:
 10298479
 Sponsoring Org:
 National Science Foundation
More Like this


A bstract We analyze topological mass terms of BF type arising in supersymmetric Mtheory compactifications to AdS 5 . These describe spontaneously broken higherform gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5branes wrapped on a Riemann surface without punctures, including theories from M5branes at a ℤ 2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0, 1, and 2form symmetries and continuous 0form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants.

We revisit the correspondence between CalabiYau (CY) threefoldisolated singularities \mathbf{X} 𝐗 and fivedimensional superconformal field theories (SCFTs), which ariseat low energy in Mtheory on the spacetime transverse to \mathbf{X} 𝐗 .Focussing on the case of toric CY singularities, we analyze the“gaugetheory phases” of the SCFT by exploiting fiberwise Mtheory/typeIIA duality. In this setup, the lowenergy gauge group simply arises onstacks of coincident D6branes wrapping 2cycles in some ALE space oftype A_{M1} A M − 1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X} 𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs)can be read off systematically. Different type IIA “reductions” giverise to different gauge theory phases, whose existence depends on theparticular (partial) resolutions of the isolated singularity \mathbf{X} 𝐗 .We also comment on the case of nonisolated toric singularities.Incidentally, we propose a slightly modified expression for theCoulombbranch prepotential of 5d \mathcal{N}=1 𝒩 = 1 gauge theories.

A bstract In flux compactifications of type IIB string theory with D3 and sevenbranes, the negative induced D3 charge localized on sevenbranes leads to an apparently pathological profile of the metric sufficiently close to the source. With the volume modulus stabilized in a KKLT de Sitter vacuum this pathological region takes over a significant part of the entire compactification, threatening to spoil the KKLT effective field theory. In this paper we employ the SeibergWitten solution of pure SU( N ) super YangMills theory to argue that wrapped sevenbranes can be thought of as bound states of more microscopic exotic branes. We argue that the lowenergy worldvolume dynamics of a stack of n such exotic branes is given by the ( A 1 , A n− 1 ) ArgyresDouglas theory. Moreover, the splitting of the perturbative (in α ′) sevenbrane into its constituent branes at the nonperturbative level resolves the apparently pathological region close to the sevenbrane and replaces it with a region of $$ \mathcal{O} $$ O (1) Einstein frame volume. While this region generically takes up an $$ \mathcal{O} $$ O (1) fraction of the compactification in a KKLT de Sitter vacuum we argue that a small flux superpotentialmore »

On the basis of a number of Swampland conditions, we argue that the Hilbert space of baby universe states must be onedimensional in a consistent theory of quantum gravity. This scenario may be interpreted as a type of “Gauss’s law for entropy” in quantum gravity, and provides a clean synthesis of the tension between Euclidean wormholes and a standard interpretation of the holographic dictionary, with no need for an ensemble. Our perspective relies crucially on the recentlyproposed potential for quantummechanical gauge redundancies between states of the universe with different topologies. We further comment on the possible exceptions in d ≤ 3 for this hypothesis and the role of an ensemble in holographic theories in the context of theories of quantum gravity in d = 2 (such as JT gravity and possible cousins in d = 3), which we argue are incomplete physical theories that should be viewed as branes in a higher dimensional theory of quantum gravity for which an ensemble plays no role.