skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Legitimation Code Theory as an Analytical Framework for Integrated STEM Curriculum and Its Enactment
Recent reform initiatives in STEM disciplines inspired the development and implementation of integrated STEM approaches to science teaching and learning. Integrated STEM as an approach to science teaching and learning leverages engineering principles and practices to situate learning in an authentic and meaningful science learning environment. However, integrated STEM curricular activities can be cognitively challenging for learners, so it is essential that teachers employ scaffolding techniques to facilitate student understanding of the connections between concepts and practices of the integrated disciplines. In this paper, we describe Legitimation Code Theory as an analytical framework and provide an analysis of semantic patterns of an integrated STEM unit (written discourse) and a middle school teacher’s enactment of that unit (oral discourse). Specifically, this analysis focused on the semantic gravity (SG), or level of context dependency, of the activities and dialogue present throughout the unit. Creating a semantic profile offers a snapshot of how abstract (weaker SG) or how specific (stronger SG) a concept is presented in relation to other concepts. Curriculum that presents ideas through the formation of semantic waves, or oscillations between areas of stronger and weaker semantic gravity, is linked to enhanced learning of complex ideas. The results of this study identify the areas in the curriculum unit and instruction that enable or constrain knowledge-building within the science classroom. We posit that the Legitimation Code Theory is a useful tool for developing and examining integrated STEM curriculum and its implementation.  more » « less
Award ID(s):
1721141
PAR ID:
10466130
Author(s) / Creator(s):
Date Published:
Journal Name:
Research in science education
ISSN:
1573-1898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Students are more likely to learn in college science, technology, engineering, and math (STEM) classrooms when instructors use teacher discourse moves (TDMs) that encourage student engagement and learning. However, although teaching practices are well studied, TDMs are not well understood in college STEM classrooms. In STEM courses at a minority-serving institution (MSI; n = 74), we used two classroom observation protocols to investigate teaching practices and TDMs across disciplines, instructor types, years of teaching experience, and class size. We found that instructors guide students in active learning activities, but they use authoritative discourse approaches. In addition, chemistry instructors presented more than biology instructors. Also, teaching faculty had relatively high dialogic, interactive discourse, and neither years of faculty teaching experience nor class size had an impact on teaching practices or TDMs. Our results have implications for targeted teaching professional development efforts across instructor and course characteristics to improve STEM education at MSIs. 
    more » « less
  2. Teaching science inquiry practices, especially the more contemporary ones, such as computational thinking practices, requires designing newer learning environments and appropriate pedagogical scaffolds. Using such learning environments, when students construct knowledge about disciplinary ideas using inquiry practices, it is important that they make connections between the two. We call such connections epistemic connections, which are about constructing knowledge using science inquiry practices. In this paper, we discuss the design of a computational thinking integrated biology unit as an Emergent Systems Microworlds (ESM) based curriculum. Using Epistemic Network Analysis, we investigate how the design of unit support students’ learning through making epistemic connections. We also analyze the teacher’s pedagogical moves to scaffold making such connections. This work implies that to support students’ epistemic connections between science inquiry practices and disciplinary ideas, it is critical to design restructured learning environments like ESMs, aligned curricular activities and provide appropriate pedagogical scaffolds. 
    more » « less
  3. Sacristán, A.I.; Cortés-Zavala, J.C.; Ruiz-Arias, P.M. (Ed.)
    Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones? 
    more » « less
  4. Lu, Baochuan; Johnson, Jeremiah W (Ed.)
    This paper presents the GenCyber Teacher Academy (GTA), a unique professional development program that provides Connecticut's high school teachers across various STEM disciplines with opportunities to explore cybersecurity concepts and incorporate them in their curriculum. Participating teachers experienced inquiry-based learning, focused classroom discourse, and collaborative learning that centered on GenCyber Cybersecurity Concepts. Results indicate GTA enabled teachers to reflect on best practices in incorporating cybersecurity concepts while promoting online safety. Moreover, GTA established a sustainable GenCyber Teacher Academy Teaching Learning Community of high school teachers supported by a community of practitioners that will collectively shape the future of cybersecurity in Connecticut. 
    more » « less
  5. Three-dimensional learning (3DL) is an approach to science instruction that was developed for K-12 science education and that can provide guidance for improving undergraduate physics laboratories. In this paper, we describe efforts to comprehensively integrate 3DL into a sequence of undergraduate introductory physics for life sciences (IPLS) laboratory courses. This paper is tailored for introductory physics faculty interested in advancing their course's learning goals by simultaneously engaging students in experimental practices, scientific reasoning, and conceptual knowledge. We first review how several well-known laboratory curricula are already implicitly aligned with 3DL. We then describe our IPLS course sequence and show how each 3DL dimension—science and engineering practices, disciplinary core ideas, and crosscutting concepts—is integrated throughout the curriculum. To support implementation, we provide samples of our course documentation, a detailed account of our 3DL integration efforts, a guide to training and supporting teaching and learning assistants in a 3DL course, and a sample set of activities to guide students in participating in 3DL instruction in the supplementary material. 
    more » « less