- PAR ID:
- 10199203
- Date Published:
- Journal Name:
- International Conference of the Learning Sciences
- Issue:
- Jun-2020
- Page Range / eLocation ID:
- 1141-1148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT.more » « less
-
Abstract This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT.
-
Abstract Engineering design provides unique ways to include epistemic tools to support collaborative sense‐making, reasoning with evidence, and assessing knowledge. Engineering design processes often require students to apply science concepts to solve problems. We draw from five engineering curricular units that engaged students in specific epistemic practices of engineering: constructing models and prototypes, making trade‐offs between criteria and constraints, and communicating through uses of conventionalized verbal, written, and symbolic models. Through analysis of curriculum products, student artifacts, and classroom discourse, we show how engaging in such practices requires the use of epistemic tools that shape, and are shaped by, the knowledge construction work of the members of the classrooms. The epistemic tools foster creating, sharing, and assessing knowledge claims. Six principles of practice for education demonstrate how such tools can be educative. These principles evince how epistemic tools support goal‐directed, concerted activity that can support the learning of disciplinary knowledge and practice and offer the potential to increase student agency.
-
Abstract Collaborative inquiry learning affords educators a context within which to support understanding of scientific practices, disciplinary core ideas, and crosscutting concepts. One approach to supporting collaborative science inquiry is through problem‐based learning (PBL). However, there are two key challenges in scaffolding collaborative inquiry learning in technology rich environments. First, it is unclear how we might understand the impact of scaffolds that address multiple functions (e.g., to support inquiry and argumentation). Second, scaffolds take different forms, further complicating how to coordinate the forms and functions of scaffolds to support effective collaborative inquiry. To address these issues, we identify two functions that needed to be scaffolded, the PBL inquiry cycle and accountable talk. We then designed predefined hard scaffolds and just‐in‐time soft scaffolds that target the regulation of collaborative inquiry processes and accountable talk. Drawing on a mixed method approach, we examine how middle school students from a rural school engaged with Crystal Island: EcoJourneys for two weeks (N=45). Findings indicate that hard scaffolds targeting the PBL inquiry process and soft scaffolds that targeted accountable talk fostered engagement in these processes. Although the one‐to‐one mapping between form and function generated positive results, additional soft scaffolds were also needed for effective engagement in collaborative inquiry and that these soft scaffolds were often contingent on hard scaffolds. Our findings have implications for how we might design the form of scaffolds across multiple functions in game‐based learning environments.
-
Abstract This study explores the process of teacher scaffolding student engagement in epistemic tools from the critical sensemaking perspective. Epistemic tools are contextual artifacts manipulated to investigate and evaluate ideas to construct knowledge within the constraints of a disciplines' representational means. The main sources of our data are ~50 min‐long semistructured, responsive interviews with the 14 secondary school science teachers who participated in our professional learning environment (PLE) and implemented the activities from the PLE in their classrooms. We utilized the tools of discourse analysis to explore teacher sensemaking while they learned to teach science with epistemic tools. We then looked at intertextualities of meaning across multiple sets of data such as students' artifacts, pre/postsurveys, audio and video recordings of the workshops, and teachers' written implementation feedback forms. As a result, we recognized a pattern across different classrooms. Teachers would begin with a contextualized goal, and use a pedagogical strategy to scaffold their students as they worked to achieve that goal. Then, all teachers reported they faced some sort of ambiguity (such as grappling with failure, different levels of students). When faced with an ambiguity, teachers would then revise either their contextualized goal or their initial pedagogical strategy to help their students to reach their goals. Finally, we utilized constant‐comparative analysis to identify themes for teachers' contextualized goals. Four major themes emerged, including communicating connections to core ideas of science, making sense of how science works, assessing students' learning process outcomes, and fostering students' epistemic agency. The findings of the study have implications for future research and professional development activities on the use of epistemic practices and tools in classrooms with unique contextual characteristics.