skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Many Facets of Information in Networked Estimation and Control
Networked control systems, where feedback loops are closed over communication networks, arise in several domains, including smart energy grids, autonomous driving, unmanned aerial vehicles, and many industrial and robotic systems active in service, production, agriculture, and smart homes and cities. In these settings, the two main layers of the system, control and communication, strongly affect each other's performance, and they also reveal the interaction between a cyber-system component, represented by information-based computing and communication technologies, and a physical-system component, represented by the environment that needs to be controlled. The information access and distribution constraints required to achieve reliable state estimation and stabilization in networked control systems have been intensively studied over the course of roughly two decades. This article reviews some of the cornerstone results in this area, draws a map for what we have learned over these years, and describes the new challenges that we will face in the future. Rather than simply listing different results, we present them in a coherent fashion using a uniform notation, and we also put them in context, highlighting both their theoreticalinsights and their practical significance. Particular attention is given to recent developments related to decentralized estimation in distributed sensing and communication systems and the information-theoretic value of event timing in the context of networked control.  more » « less
Award ID(s):
2127946
PAR ID:
10466146
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Control, Robotics, and Autonomous Systems
Volume:
6
Issue:
1
ISSN:
2573-5144
Page Range / eLocation ID:
233 to 259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One fundamental problem in causal inference is to learn the individual treatment effects (ITE) -- assessing the causal effects of a certain treatment (e.g., prescription of medicine) on an important outcome (e.g., cure of a disease) for each data instance, but the effectiveness of most existing methods is often limited due to the existence of hidden confounders. Recent studies have shown that the auxiliary relational information among data can be utilized to mitigate the confounding bias. However, these works assume that the observational data and the relations among them are static, while in reality, both of them will continuously evolve over time and we refer such data as time-evolving networked observational data. In this paper, we make an initial investigation of ITE estimation on such data. The problem remains difficult due to the following challenges: (1) modeling the evolution patterns of time-evolving networked observational data; (2) controlling the hidden confounders with current data and historical information; (3) alleviating the discrepancy between the control group and the treated group. To tackle these challenges, we propose a novel ITE estimation framework Dynamic Networked Observational Data Deconfounder (\mymodel) which aims to learn representations of hidden confounders over time by leveraging both current networked observational data and historical information. Additionally, a novel adversarial learning based representation balancing method is incorporated toward unbiased ITE estimation. Extensive experiments validate the superiority of our framework when measured against state-of-the-art baselines. The implementation can be accessed in https://github.com/jma712/DNDC https://github.com/jma712/DNDC. 
    more » « less
  2. The increasing penetration of renewable energy resources in distribution systems necessitates high-speed monitoring and control of voltage for ensuring reliable system operation. However, existing voltage control algorithms often make simplifying assumptions in their formulation, such as real-time availability of smart meter measurements (for monitoring), or real-time knowledge of every power injection information (for control). This paper leverages the recent advances made in high-speed state estimation for real-time unobservable distribution systems to formulate a deep reinforcement learning (DRL)-based control algorithm that utilizes the state estimates alone to control the voltage of the entire system. The results obtained for a modified (renewable-rich) IEEE 34-node distribution feeder indicate that the proposed approach excels in monitoring and controlling voltage of active distribution systems. 
    more » « less
  3. Integration of complex and high-speed electronic components in the state of art electric power system enhances the need for improved security infrastructure and resilience against invasive and non-invasive attacks on the smart grid. A modern smart grid system integrates a variety of instruments and standards to achieve cost-effective and time-effective energy measurement and management. As the fundamental component in the smart grid, the smart meter supports real-time monitoring, automatic control, and high-speed communication along with power consumption recording. However, the wide use of smart meters also increases privacy and security concerns. In this paper, we demonstrate the vulnerability of side-channel attacks on secure communication in smart grids for software-based and hardware-based implementations. 
    more » « less
  4. With the increasing adoption of smart home devices, users rely on device automation to control their homes. This automation commonly comes in the form of smart home routines, an abstraction available via major vendors. Yet, questions remain about how a system should best handle conflicts in which different routines access the same devices simultaneously. In particular---among the myriad ways a smart home system could handle conflicts, which of them are currently utilized by existing systems, and which ones result in the highest user satisfaction? We investigate the first question via a survey of existing literature and find a set of conditions, modifications, and system strategies related to handling conflicts. We answer the second question via a scenario-based Mechanical-Turk survey of users interested in owning smart home devices and current smart home device owners (N=197). We find that: (i) there is no context-agnostic strategy that always results in high user satisfaction, and (ii) users' personal values frequently form the basis for shaping their expectations of how routines should execute. 
    more » « less
  5. null (Ed.)
    A high penetration level of smart devices and communication networks increases the threat of cyber-attacks in the distribution system. In this paper, we model a hidden, coordinated, net load redistribution attack (NLRA) in an AC distribution system. Based on local information of an attack region, the attacker’s goal is to create violations in nodal voltage magnitude estimation. Acting as a system operator equipped with global AC state estimation and bad data detection, we validate the stealthiness of the hidden NLRA in multiple attack cases. Simulation results on a modified PG&E 69-node distribution system show the validity of the proposed NLRA. The influence of NLRA on the distribution system is assessed and the impact of attack regions, attack timing, and system observability is also revealed. 
    more » « less