skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Equitable Transit Networks
Public transit is an essential infrastructure enabling access to employment, healthcare, education, and recreational facilities. While accessibility to transit is important in general, some sections of the population depend critically on transit. However, existing public transit is often not designed equitably, and often, equity is only considered as an additional objective post hoc, which hampers systemic changes. We present a formulation for transit network design that considers different notions of equity and welfare explicitly. We study the interaction between network design and various concepts of equity and present trade-offs and results based on real-world data from a large metropolitan area in the United States of America.  more » « less
Award ID(s):
1952011
PAR ID:
10466159
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On-demand transit is attracting the attention of transportation researchers and transit agencies for its potential to solve the first-mile/last-mile problem. Although on-demand transit has been proved to increase transit accessibility significantly, its impact on transit equity and equality has not been addressed. In this study we examined the potential impact of the On-Demand Multimodal Transit System (ODMTS) in Atlanta (GA), on both transit equity and equality compared with the existing transit system. The results showed that ODMTS could have a positive impact on transit equality by reducing the disparity in transit service between neighborhoods close to and far from the existing transit network; however, it may not improve transit equity. 
    more » « less
  2. The public commute is essential to all urban centers and is an efficient and environment-friendly way to travel. Transit systems must become more accessible and user-friendly. Since public transit is majorly designed statically, with very few improvements coming over time, it can get stagnated, unable to update itself with changing population trends. To better understand transportation demands and make them more usable, efficient, and demographic-focused, we propose a fast, multi-layered transit simulation that primarily focuses on public transit simulation (BTE-Sim). BTE-Sim is designed based on the population demand, existing traffic conditions, and the road networks that exist in a region. The system is versatile, with the ability to run different configurations of the existing transit routes, or inculcate any new changes that may seem necessary, or even in extreme cases, new transit network design as well. In all situations, it can compare multiple transit networks and provide evaluation metrics for them. It provides detailed data on each transit vehicle, the trips it performs, its on-time performance and other necessary factors. Its highlighting feature is the considerably low computation time it requires to perform all these tasks and provide consistently reliable results. 
    more » « less
  3. Public transit in the U.S. has an unsettled future. The onset of the COVID-19 pandemic saw a dramatic decline in transit ridership, with agency operations, and user perceptions of safety changing significantly. However, one new factor beyond the control of agencies is playing an outsized role in transit ridership: the shifting employment patterns in the hybrid work era. Indeed, a lasting and widespread adoption of telework has emerged as a key determinant of individual transit behaviors. This study investigates the impact of teleworking on public transit ridership changes across the different transit services in the Chicago area during the pandemic, employing a random forest machine learning approach applied to large-scale survey data (n = 5637). The use of ensemble machine learning enables a data-driven investigation that is tailored for each of the three main transit service operators in Chicago (Chicago Transit Authority, Metra, and Pace). The analysis reveals that the number of teleworking days per week is a highly significant predictor of lapsed ridership. As a result, commuter-centric transit modes—such as Metra—saw the greatest declines in ridership during the pandemic. The study's findings highlight the need for transit agencies to adapt to the enduring trend of teleworking, considering its implications for future ridership and transportation equity. Policy recommendations include promoting non-commute transit use and addressing the needs of demographic groups less likely to telework. The study contributes to the understanding of how telework trends influence public transit usage and offers insights for transit agencies navigating the post-pandemic world. 
    more » « less
  4. null (Ed.)
    While public transit network design has a wide literature, the study of line planning and route generation under uncertainty is not so well covered. Such uncertainty is present in planning for emerging transit technologies or operating models in which demand data is largely unavailable to make predictions on. In such circumstances, this paper proposes a sequential route generation process in which an operator periodically expands the route set and receives ridership feedback. Using this sensor loop, a reinforcement learning-based route generation methodology is proposed to support line planning for emerging technologies. The method makes use of contextual bandit problems to explore different routes to invest in while optimizing the operating cost or demand served. Two experiments are conducted. They (1) prove that the algorithm is better than random choice; and (2) show good performance with a gap of 3.7% relative to a heuristic solution to an oracle policy. 
    more » « less
  5. null (Ed.)
    The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services. 
    more » « less