One of the most important and widespread corn/maize virus diseases is maize dwarf mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a machine learning analysis of five-band multispectral imagery collected via an unmanned aerial system (UAS) during the 2021 and 2022 seasons for SCMV disease detection in corn fields. The three primary objectives are to (i) determine the spectral bands and vegetation indices that are most important or correlated with SCMV infection in corn, (ii) compare spectral signatures of mock-inoculated and SCMV-inoculated plants, and (iii) compare the performance of four machine learning algorithms, including ridge regression, support vector machine (SVM), random forest, and XGBoost, in predicting SCMV during early and late stages in corn. On average, SCMV-inoculated plants had higher reflectance values for blue, green, red, and red-edge bands and lower reflectance for near-infrared as compared to mock-inoculated samples. Across both years, the XGBoost regression model performed best for predicting disease incidence percentage (R2 = 0.29, RMSE = 29.26), and SVM classification performed best for the binary prediction of SCMV-inoculated vs. mock-inoculated samples (72.9% accuracy). Generally, model performances appeared to increase as the season progressed into August and September. According to Shapley additive explanations (SHAP analysis) of the top performing models, the simplified canopy chlorophyll content index (SCCCI) and saturation index (SI) were the vegetation indices that consistently had the strongest impacts on model behavior for SCMV disease regression and classification prediction. The findings of this study demonstrate the potential for the development of UAS image-based tools for farmers, aiming to facilitate the precise identification and mapping of SCMV infection in corn.
more »
« less
Early Detection of Wheat Yellow Rust Disease and Its Impact on Terminal Yield with Multi-Spectral UAV-Imagery
The food production system is vulnerable to diseases more than ever, and the threat is increasing in an era of climate change that creates more favorable conditions for emerging diseases. Fortunately, scientists and engineers are making great strides to introduce farming innovations to tackle the challenge. Unmanned aerial vehicle (UAV) remote sensing is among the innovations and thus is widely applied for crop health monitoring and phenotyping. This study demonstrated the versatility of aerial remote sensing in diagnosing yellow rust infection in spring wheats in a timely manner and determining an intervenable period to prevent yield loss. A small UAV equipped with an aerial multispectral sensor periodically flew over, and collected remotely sensed images of, an experimental field in Chacabuco (−34.64; −60.46), Argentina during the 2021 growing season. Post-collection images at the plot level were engaged in a thorough feature-engineering process by handcrafting disease-centric vegetation indices (VIs) from the spectral dimension, and grey-level co-occurrence matrix (GLCM) texture features from the spatial dimension. A machine learning pipeline entailing a support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) was constructed to identify locations of healthy, mild infection, and severe infection plots in the field. A custom 3-dimensional convolutional neural network (3D-CNN) relying on the feature learning mechanism was an alternative prediction method. The study found red-edge (690–740 nm) and near infrared (NIR) (740–1000 nm) as vital spectral bands for distinguishing healthy and severely infected wheats. The carotenoid reflectance index 2 (CRI2), soil-adjusted vegetation index 2 (SAVI2), and GLCM contrast texture at an optimal distance d = 5 and angular direction θ = 135° were the most correlated features. The 3D-CNN-based wheat disease monitoring performed at 60% detection accuracy as early as 40 days after sowing (DAS), when crops were tillering, increasing to 71% and 77% at the later booting and flowering stages (100–120 DAS), and reaching a peak accuracy of 79% for the spectral-spatio-temporal fused data model. The success of early disease diagnosis from low-cost multispectral UAVs not only shed new light on crop breeding and pathology but also aided crop growers by informing them of a prevention period that could potentially preserve 3–7% of the yield at the confidence level of 95%.
more »
« less
- Award ID(s):
- 2133407
- PAR ID:
- 10466254
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 15
- Issue:
- 13
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 3301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data.more » « less
-
Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high spatial and temporal resolution imagery for monitoring crop stress at early stages of development. Analysis of UAV-derived data with advanced machine learning models could improve real-time management in agricultural systems, but guidance for this integration is currently limited. Here we compare two deep learning-based strategies for early warning detection of crop stress, using multitemporal imagery throughout the growing season to predict field-scale yield in irrigated rice in eastern Arkansas. Both deep learning strategies showed improvements upon traditional statistical learning approaches including linear regression and gradient boosted decision trees. First, we explicitly accounted for variation across developmental stages using a 3D convolutional neural network (CNN) architecture that captures both spatial and temporal dimensions of UAV images from multiple time points throughout one growing season. 3D-CNNs achieved low prediction error on the test set, with a Root Mean Squared Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we considered only spatial relationships among pixels for image features acquired during a single flyover. 2D-CNNs trained on images from a single day were most accurate when images were taken during booting stage or later, with RMSE ranging from 7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-like models (based on analyses of prediction maps and feature importance) is the spatial denoising effect that corrects yield predictions for individual pixels based on the values of vegetation index and thermal features for nearby pixels. Our results highlight the promise of convolutional autoencoders for UAV-based yield prediction in rice.more » « less
-
Precise monitoring of individual crop growth and health status is crucial for precision agriculture practices. However, traditional inspection methods are time-consuming, labor-intensive, prone to human error, and may not provide the comprehensive coverage required for the detailed analysis of crop variability across an entire field. This research addresses the need for efficient and high-resolution crop monitoring by leveraging Unmanned Aerial Vehicle (UAV) imagery and advanced computational techniques. The primary goal was to develop a methodology for the precise identification, extraction, and monitoring of individual corn crops throughout their growth cycle. This involved integrating UAV-derived data with image processing, computational geometry, and machine learning techniques. Bi-weekly UAV imagery was captured at altitudes of 40 m and 70 m from 30 April to 11 August, covering the entire growth cycle of the corn crop from planting to harvest. A time-series Canopy Height Model (CHM) was generated by analyzing the differences between the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) derived from the UAV data. To ensure the accuracy of the elevation data, the DSM was validated against Ground Control Points (GCPs), adhering to standard practices in remote sensing data verification. Local spatial analysis and image processing techniques were employed to determine the local maximum height of each crop. Subsequently, a Voronoi data model was developed to delineate individual crop canopies, successfully identifying 13,000 out of 13,050 corn crops in the study area. To enhance accuracy in canopy size delineation, vegetation indices were incorporated into the Voronoi model segmentation, refining the initial canopy area estimates by eliminating interference from soil and shadows. The proposed methodology enables the precise estimation and monitoring of crop canopy size, height, biomass reduction, lodging, and stunted growth over time by incorporating advanced image processing techniques and integrating metrics for quantitative assessment of fields. Additionally, machine learning models were employed to determine relationships between the canopy sizes, crop height, and normalized difference vegetation index, with Polynomial Regression recording an R-squared of 11% compared to other models. This work contributes to the scientific community by demonstrating the potential of integrating UAV technology, computational geometry, and machine learning for accurate and efficient crop monitoring at the individual plant level.more » « less
-
Plant diseases are one of the grand challenges that face the agriculture sector worldwide. In the United States, crop diseases cause losses of one-third of crop production annually. Despite the importance, crop disease diagnosis is challenging for limited-resources farmers if performed through optical observation of plant leaves’ symptoms. Therefore, there is an urgent need for markedly improved detection, monitoring, and prediction of crop diseases to reduce crop agriculture losses. Computer vision empowered with Machine Learning (ML) has tremendous promise for improving crop monitoring at scale in this context. This paper presents an ML-powered mobile-based system to automate the plant leaf disease diagnosis process. The developed system uses Convolutional Neural networks (CNN) as an underlying deep learning engine for classifying 38 disease categories. We collected an imagery dataset containing 96,206 images of plant leaves of healthy and infected plants for training, validating, and testing the CNN model. The user interface is developed as an Android mobile app, allowing farmers to capture a photo of the infected plant leaves. It then displays the disease category along with the confidence percentage. It is expected that this system would create a better opportunity for farmers to keep their crops healthy and eliminate the use of wrong fertilizers that could stress the plants. Finally, we evaluated our system using various performance metrics such as classification accuracy and processing time. We found that our model achieves an overall classification accuracy of 94% in recognizing the most common 38 disease classes in 14 crop species.more » « less
An official website of the United States government

