skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging investigator series: microplastic-based leachate formation under UV irradiation: the extent, characteristics, and mechanisms
Microplastics in the aquatic system are among the many inevitable consequences of plastic pollution, which has cascading environmental and public health impacts. Our study aimed at analyzing surface interactions and leachate production of six microplastics under ultraviolet (UV) irradiation. Leachate production was analyzed for the dissolved organic content (DOC), UV 254 , and fluorescence through excitation emission (EEM) to determine the kinetics and mechanisms involved in the release of organic matter by UV irradiation. The results suggested there was a clear trend of organic matter being released from the surface of the six microplastics caused by UV irradiation based on DOC, UV 254 absorbance, and EEM intensity increasing with time. Polystyrene had the greatest and fastest increase in DOC concentrations, followed by the resin coated polystyrene. Experiments conducted at different temperatures indicated the endothermic nature of these leaching mechanisms. The differences in leachate formation for different polymers were attributed to their chemical makeup and their potency to interact with UV. The aged microplastic samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), to determine the surface changes with respect to leachate formation. Results indicated that all microplastics had increasing carbonyl indices when aged by UV with polystyrene being the greatest. These findings affirm that the leachate formation is an interfacial interaction and could be a significant source of organic compound influx to natural waters due to the extremely abundant occurrence of microplastics and their large surface areas.  more » « less
Award ID(s):
2003859 2004160
PAR ID:
10466411
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
9
Issue:
2
ISSN:
2053-1400
Page Range / eLocation ID:
363 to 374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Periphyton is a ubiquitous niche in aquatic environments and can be a significant source of dissolved organic matter (DOM) production and leaching, especially in such environment as the Everglades, a slow-water flow wetland in Florida, USA. We employed an array of methods, including compositional analysis, 3-dimensional excitation emission matrix (3-D EEM) fluorescence spectroscopy, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to perform quantitative and qualitative analyses on the DOM produced by periphyton and DOM in surrounding surface water and periphyton overlying water for comparison purposes. Higher dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) contents in periphyton pore water than surface water and periphyton overlying water indicated the remarkable contribution from periphyton-produced DOM. Higher total protein, carbohydrate, and thiol contents in periphyton pore water than in surface water and periphyton overlying water underscored the possibility of periphyton pore water DOM leached from periphyton. These results agreed with 3-D EEM and ATR-FTIR analyses that showed the prevalence of possible microbial source of periphyton pore water DOM as indicated by higher fluorescence index (FI) than surface water and periphyton overlying water. Similarly, the size-fractionated DOM from surface water demonstrated terrestrial sources, and periphyton pore water demonstrated microbial sources regardless of their differences in size based on their FI values. The types of periphyton affect the production and composition of DOM, as evidenced by higher total protein, carbohydrate, and chlorophyll-a (Chl-a) contents in floating mat on the water surface than in epiphyton attached to submerged phytoplankton, probably because the former is photo-synthetically more productive than the latter due to different light availability. This study provided fundamental information on periphyton DOM that is essential for further investigating its role in carbon cycle and its biogeochemistry. 
    more » « less
  2. Retention of carbon (C), either by physical mechanisms or microbial uptake, is a key driver of the transformation and storage of C and nutrients within ecosystems. Both the molecular composition and nutrient content of organic matter influence the rate at which it is retained in streams, but the relative influence of these characteristics remains unclear. We estimated the effects of nutrient content and molecular composition of dissolved organic C (DOC) on uptake in boreal streams by measuring rates of C retention, in situ, following introduction of leachates derived from alder, poplar, and spruce trees subject to long-term fertilization with nitrogen (N) or phosphorus (P). Leachate C:N varied approximately twofold, and C:P varied nearly 20-fold across species and nutrient treatments. Uptake of DOC was greatest for leachates derived from trees that had been fertilized with P, a finding consistent with P-limitation of uptake and/or preferential sorption of P-containing molecules. Optical measures indicated that leachates derived from the three tree species varied in molecular composition, but uptake of DOC did not differ across species, suggesting weak constraints on retention imposed by molecular composition relative to nutrient limitation. Observed coupling between P and C cycles highlights the potential for increased P availability to enhance DOC retention in headwater streams. 
    more » « less
  3. Tropical peatlands play an important role in global carbon (C) cycling, but little is known about factors driving carbon dioxide (CO2) and methane (CH4) emissions from these ecosystems, especially production in deeper soils. This study aimed to identify source material and processes regulating C emissions originating deep in three sites in a peatland on the Caribbean coast of Panama. We hypothesized that (1) surface-derived organic matter transported down the soil profile is the primary C source for respiration products at depth and that (2) high lignin content results in hydrogenotrophic methanogenesis as the dominant CH4 production pathway throughout the profile. We used radiocarbon isotopic values to determine whether CO2 and CH4 at depth are produced from modern substrates or ancient deep peat, and we used stable C isotopes to identify the dominant CH4 production pathway. Peat organic chemistry was characterized using 13C solid-state nuclear magnetic resonance spectroscopy (13C-NMR). We found that deep peat respiration products had radiocarbon signatures that were more similar to surface dissolved organic C (DOC) than deep solid peat. These results indicate that surface-derived organic matter was the dominant source for gas production at depth in this peatland, likely because of vertical transport of DOC from the surface to depth. Lignin, which was the most abundant compound (55 %–70 % of C), increased with depth across these sites, whereas other C compounds like carbohydrates did not vary with depth. These results suggest that there is no preferential decomposition of carbohydrates but instead preferential retention of lignin. Stable isotope signatures of respiration products indicated that hydrogenotrophic rather than acetoclastic methanogenesis was the dominant production pathway of CH4 throughout the peat profile. These results show that deep C in tropical peatlands does not contribute greatly to surface fluxes of carbon dioxide, with compounds like lignin preferentially retained. This protection of deep C helps explain how peatland C is retained over thousands of years and points to the vulnerability of this C should anaerobic conditions in these wet ecosystems change. 
    more » « less
  4. Abstract The current paradigm in peatland ecology is that the organic matter inputs from plant photosynthesis (e.g. moss litter) exceed that of decomposition, tipping the metabolic balance in favour of carbon (C) storage. Here, we investigated an alternative hypothesis, whereby exudates released by microalgae can actually accelerate C losses from the surface waters of northern peatlands by stimulating dissolved organic C (DOC) decomposition in a warmer environment expected with climate change. To test this hypothesis, we evaluated the biodegradability of fenDOCin a factorial design with and without algalDOCin both ambient (15°C) and elevated (20°C) water temperatures during a laboratory bioassay.WhenDOCsources were evaluated separately, decomposition rates were higher in treatments with algalDOConly than with fenDOConly, indicating that the quality of the organic matter influenced degradability. A mixture of substrates (½ algalDOC + ½ fenDOC) exceeded the expected level of biodegradation (i.e. the average of the individual substrate responses) by as much as 10%, and the magnitude of this effect increased to more than 15% with warming.Specific ultraviolet absorbance at 254 nm (SUVA254), a proxy for aromatic content, was also significantly higher (i.e. more humic) in the mixture treatment than expected from SUVA254values in single substrate treatments.Accelerated decomposition in the presence of algalDOCwas coupled with an increase in bacterial biomass, demonstrating that enhanced metabolism was associated with a more abundant microbial community.These results present an alternative energy pathway for heterotrophic consumers to breakdown organic matter in northern peatlands. Since decomposition in northern peatlands is often limited by the availability of labile organic matter, this mechanism could become increasingly important as a pathway for decomposition in the surface waters of northern peatlands where algae are expected to be more abundant in conditions associated with ongoing climate change. 
    more » « less
  5. This dataset includes (1) original data from a dissolved organic carbon (DOC) incubation experiment and (2) a data synthesis of the DOC incubation experiment literature. Study component (1) was a factorial lab experiment crossing varying dissolved organic matter (DOM) sources (Suwannee River Fulvic Acid, Elliott soil leachate, Chlorella leachate) with varying microbial communities. The objective of this study component was to test the interacting effects of microbial community composition and DOM characteristics on carbon (C) biodegradation. We used a Micro-Oxymax Respirometer (Columbus Instruments, Columbus, Ohio) to measure carbon dioxide and oxygen accumulation at two hour intervals for a period of two weeks, and quantified the initial and final concentrations of dissolved organic carbon and total dissolved nitrogen of each experimental unit. To verify that the three DOM source solutions had differing chemical compositions and potential bioreactivity, we optically characterized each DOM source using mass spectra analysis and excitation-emission matrices (EEMs). Study component (2) is a synthesis of DOC concentrations from the C degradation experiment literature. The criteria for including a study in this synthesis was that (a) incubation DOM was sourced from a river, lake, marine, estuary, or marsh, and (b) that C concentrations were measured at least twice throughout the incubation in addition to an initial measurement. For each study, we extracted initial DOC values, elapsed incubation time, and reported DOC concentrations during the incubation period for each experimental treatment. This data package is completed. 
    more » « less