skip to main content


This content will become publicly available on August 1, 2024

Title: Federated learning on Riemannian manifolds
Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated kPCA. We propose a Riemannian federated SVRG (RFedSVRG) method to solve federated optimization over Riemannian manifolds. We analyze its convergence rate under different scenarios. Numerical experiments are conducted to compare RFedSVRG with the Riemannian counterparts of FedAvg and FedProx. We observed from the numerical experiments that the advantages of RFedSVRG are significant.  more » « less
Award ID(s):
1934568
NSF-PAR ID:
10466443
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Set-Valued Analysis and Optimization
Volume:
5
Issue:
2
ISSN:
2562-7775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an ϵ -stationary point with O(ϵ−3) IFOs in the online case, and O(n+n‾√ϵ−2) IFOs in the finite-sum case with n being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that use Riemannian subgradient information. 
    more » « less
  2. From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold. 
    more » « less
  3. Communication is a key bottleneck in federated learning where a large number of edge devices collaboratively learn a model under the orchestration of a central server without sharing their own training data. While local SGD has been proposed to reduce the number of FL rounds and become the algorithm of choice for FL, its total communication cost is still prohibitive when each device needs to communicate with the remote server repeatedly for many times over bandwidth-limited networks. In light of both device-to-device (D2D) and device-to-server (D2S) cooperation opportunities in modern communication networks, this paper proposes a new federated optimization algorithm dubbed hybrid local SGD (HL-SGD) in FL settings where devices are grouped into a set of disjoint clusters with high D2D communication bandwidth. HL-SGD subsumes previous proposed algorithms such as local SGD and gossip SGD and enables us to strike the best balance between model accuracy and runtime. We analyze the convergence of HL-SGD in the presence of heterogeneous data for general nonconvex settings. We also perform extensive experiments and show that the use of hybrid model aggregation via D2D and D2S communications in HL-SGD can largely speed up the training time of federated learning. 
    more » « less
  4. null (Ed.)
    Federated multi-armed bandits (FMAB) is a new bandit paradigm that parallels the federated learning (FL) framework in supervised learning. It is inspired by practical applications in cognitive radio and recommender systems, and enjoys features that are analogous to FL. This paper proposes a general framework of FMAB and then studies two specific federated bandit models. We first study the approximate model where the heterogeneous local models are random realizations of the global model from an unknown distribution. This model introduces a new uncertainty of client sampling, as the global model may not be reliably learned even if the finite local models are perfectly known. Furthermore, this uncertainty cannot be quantified a priori without knowledge of the suboptimality gap. We solve the approximate model by proposing Federated Double UCB (Fed2-UCB), which constructs a novel “double UCB” principle accounting for uncertainties from both arm and client sampling. We show that gradually admitting new clients is critical in achieving an O(log(T)) regret while explicitly considering the communication loss. The exact model, where the global bandit model is the exact average of heterogeneous local models, is then studied as a special case. We show that, somewhat surprisingly, the order-optimal regret can be achieved independent of the number of clients with a careful choice of the update periodicity. Experiments using both synthetic and real-world datasets corroborate the theoretical analysis and demonstrate the effectiveness and efficiency of the proposed algorithms. 
    more » « less
  5. Federated Learning (FL) is a promising framework for multiple clients to learn a joint model without directly sharing the data. In addition to high utility of the joint model, rigorous privacy protection of the data and communication efficiency are important design goals. Many existing efforts achieve rigorous privacy by ensuring differential privacy for intermediate model parameters, however, they assume a uniform privacy parameter for all the clients. In practice, different clients may have different privacy requirements due to varying policies or preferences. In this paper, we focus on explicitly modeling and leveraging the heterogeneous privacy requirements of different clients and study how to optimize utility for the joint model while minimizing communication cost. As differentially private perturbations affect the model utility, a natural idea is to make better use of information submitted by the clients with higher privacy budgets (referred to as "public" clients, and the opposite as "private" clients). The challenge is how to use such information without biasing the joint model. We propose P rojected F ederated A veraging (PFA), which extracts the top singular subspace of the model updates submitted by "public" clients and utilizes them to project the model updates of "private" clients before aggregating them. We then propose communication-efficient PFA+, which allows "private" clients to upload projected model updates instead of original ones. Our experiments verify the utility boost of both algorithms compared to the baseline methods, whereby PFA+ achieves over 99% uplink communication reduction for "private" clients. 
    more » « less