skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smart Pill Dispenser with Smart Cup
This research paper describes the design of a pill dispensing device that can assist people with physical or cognitive limitations in taking their prescribed medications. The design is based on the communication between two devices for the purpose of dispensing pills at a scheduled time and identifying if these pills had been properly consumed within a specified time frame. The two devices are based on Arduino RP2040 connect microcontrollers and implement several sensors in the aid of dispensing and detecting of pill consumption. The sensors implemented are an IMU, and distances sensors, such as an ultrasonic sensor and an IR proximity sensor, additionally a real time clock module and stepper motor have been included in the design for the scheduling and dispensing of the pills. The two devices will communicate using Bluetooth for low energy devices (BLE) and the purpose of the devices is to provide aid to the intended target audience in achieving a healthier lifestyle.  more » « less
Award ID(s):
2125654
PAR ID:
10466543
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-3761-7
Page Range / eLocation ID:
0598 to 0604
Subject(s) / Keyword(s):
Bluetooth BLE Arduino Connect Stepper Motor Assistive Technology IMU IR proximity Ultrasonic
Format(s):
Medium: X
Location:
Seattle, WA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper describes the design of a device that can assist seniors or people with physical or cognitive limitations to take their prescribed medications that are in the form of pills on time while verifying that such pills have been actually consumed. The design consists of a portable smart pill dispenser that will rest on a base, allowing it to dispense pills into a smart cup. The smart pill dispenser uses a stepper motor to rotate to a desired pills based on a specific time slot/day of the week. The smart cup attached to the pill box uses an accelerometer, gyroscope, and an IR proximity sensor to detect if a user is taking the medication by how much the smart cup is lifted and tilted. The smart cup will inform the smart pill dispenser if the pills are properly consumed or not, thus, allowing the device to potentially aid the patients to have a healthier life. 
    more » « less
  2. Recent advancements in sensors, device manufacturing, and big data technologies have enabled the design and manufacturing of smart wearables for a wide array of applications in healthcare. These devices can be used to remotely monitor and diagnose various diseases and aid in the rehabilitation of patients. Smart wearables are an unobtrusive and affordable alternative to costly and time-consuming health care efforts such as hospitalization and late diagnosis. Developments in micro- and nanotechnologies have led to the miniaturization of sensors, hybrid 3D printing of flexible plastics, embedded electronics, and intelligent fabrics, as well as wireless communication mediums that permit the processing, storage, and communication of data between patients and healthcare facilities. Due to these complex component architectures that comprise smart wearables, manufacturers have faced a number of problems, including minimum sensor configuration, data security, battery life, appropriate user interfaces, user acceptance, proper diagnosis, and many more. There has been a significant increase in interest from both the academic and industrial communities in research and innovation related to smart wearables. However, since smart wearables integrate several different aspects such as design, manufacturing, and analytics, the existing literature is quite widespread, making it less accessible for researchers and practitioners. The purpose of this study is to narrow this gap by providing a state-of-the-art review of the extant design, manufacturing, and analytics literature on smart wearables-all in one place- thereby facilitating future work in this rapidly growing field of research and application. Lastly, it also provides an in-depth discussion on two very important challenges facing the smart wearable devices, which include barriers to user adoption and the manufacturing technologies of the wearable devices. 
    more » « less
  3. null (Ed.)
    Smart bracelets able to interpret the wearer's emotional state and communicate it to a remote decision-support facility will have broad applications in healthcare, elder care, the military, and other fields. While there are existing commercial embedded devices, such as the Apple Watch, that have health-monitoring sensors, such devices cannot sufficiently support a real-time health-monitoring system with battery-efficient remote data delivery. Ongoing R&D is developing solutions capable of monitoring multiple psycho-physiological signals. Possible hardware configurations include wrist-worn devices and sensors across an augmented reality headset (e.g., HoloLens 2). The device should carry an array of sensors of psycho-physiological signals, including a galvanic skin response sensor, motion sensor, skin temperature sensor, and a heart rate sensor. Output from these sensors can be intelligently fused to monitor the affective state and to determine specific trigger events for the wearer. To enable real-time remote monitoring applications, the device needs to be low-power to allow persistent monitoring while prolonging usage before recharging. For many applications, specialized sensor arrays are required, e.g. a galvanic skin response sensor. An application-flexible device would allow adding/removing sensors and would provide a choice of communication modules (e.g., Bluetooth 5.0 low-energy vs ZigBee). Appropriate configurations of the device would support applications in military health monitoring, drug-addiction mitigation, autistic trigger monitoring, and augmented reality exploration. A configuration example is: motion sensors (3-axis accelerometers, gyroscopes, and magnetometers to track steps, falls, and energy usage), a heart-rate sensor (e.g., an optical-based heart rate sensor with a single monitoring zone using the process of photoplethysmography (PPS)), at least a Bluetooth 5.0 (but a different communication device may be needed depending on the use case), and flash memory to temporarily store data when the device is not remotely communicating. The wearables field has greatly advanced in the quality of sensors; the fusion of multi-sensor data is the current frontier. 
    more » « less
  4. Enormous amounts of data are generated each day by sensor devices. In agriculture, these devices continuously monitor numerous environmental properties in the fields of aquaponics, hydroponics, and soil-based food production. Data stream mining is the process of extracting data from continuous, rapidly sampled data sources. The data accuracy that can be achieved in data stream mining is highly dependent on the algorithm chosen to suppress noise. For threshold-based automation, an actuator can be activated when the value of sensor data is above a permissible threshold. Noise from sensors may activate the actuator. Several statistical and machine learning-based noise- suppression algorithms have been proposed in the literature. The proposed LSTM (Long Short-Term Memory) filter performs better noise suppression than other traditional filters – Kalman and moving average filters. The LSTM filter is installed in our threshold-based aquaponics automation to maximize sustainable food production at minimum cost. 
    more » « less
  5. The demand for acoustic wave-based devices has been rapidly increasing in the aerospace, chemical, and biological fields due to their versatility towards sensing measurands. This paper explores the characteristics and effectiveness of acoustic wave-based two-port sensors designed with bidirectional IDT electrodes placed in different configurations, such as surface mounted or embedded inside the substrate, through numerical and experimental analysis. The numerical study involves 3D modeling of the sensor design to investigate wave characteristics by utilizing time-domain, i.e., time delay and wave patterns, and frequency-domain analysis, i.e., scattering parameter study. The sensor made of polyvinylidene fluoride polymer is modeled to ensure the concordance between the theoretical and numerical results as well as a preliminary experimental result obtained from transparent piezoelectric films. The coupling of modes theoretical model is used to obtain the device’s frequency response by a transmission matrix cascading technique. These investigated results will stand as guidance and facilitate defining an approach that can predict the behavior of the sensor with a specific design under different operating environments and expand its viability towards multi-functional devices that are reliable and sensitive to intended measurands. 
    more » « less