skip to main content


Title: Non-Cubic Eightfold Constellation for High-Performance Stokes Vector Modulation

A novel non-cubic constellation for eightfold Stokes vector modulation improves modulation loss, link budget, and intersymbol interference at high speed, while using simpler drive signals. Experiments confirm 5.2 dB improvement at 30 Gb/s.

 
more » « less
Award ID(s):
1910140
NSF-PAR ID:
10466579
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-17-3
Page Range / eLocation ID:
JTu7A.3
Format(s):
Medium: X
Location:
Rochester, New York
Sponsoring Org:
National Science Foundation
More Like this
  1. The capability to modulate the intensity of an optical beam has scientific and practical significance. In this work, we demonstrate Y-Z cut lithium niobate acousto-optic modulators with record-high modulation efficiency, requiring only 1.5 W/cm2for 100% modulation at 7 MHz. These modulators use a simple fabrication process; coating the top and bottom surfaces of a thin lithium niobate wafer with transparent electrodes. The fundamental shear acoustic mode of the wafer is excited through the transparent electrodes by applying voltage with frequency corresponding to the resonant frequency of this mode, confining an acoustic standing wave to the electrode region. Polarization of light propagating through this region is modulated at the applied frequency. Polarization modulation is converted to intensity modulation by placing the modulator between polarizers. To showcase an important application space for this modulator, we integrate it with a standard image sensor and demonstrate 4 megapixel time-of-flight imaging.

     
    more » « less
  2. Abstract

    An electrically tunable nonlinear optical device working at near‐infrared wavelength is theoretically and experimentally demonstrated. Ultrahigh optical second‐order nonlinearity from titanium‐nitride‐based coupled metallic quantum wells can be electrically tuned by external electric field. Tunability of second‐order susceptibilityχ(2)reaches a 63% modulation depth with an average tunability of 10.5% per volt. In addition, electro‐optic modulation of second‐harmonic signal is presented by continuous tuning ofχ(2)over a long period of time with high stability. These results provide a new material platform with actively controllable strong nonlinearity for future nonlinear photonic systems, such as ultra‐compact opto‐electronic modulation devices and reconfigurable nonlinear metamaterials and metasurfaces.

     
    more » « less
  3. In this Letter, we propose and experimentally demonstrate the first, to our knowledge, integrated liquid-crystal-based (LC-based) variable-tap devices for visible-light amplitude modulation. These devices leverage the birefringence of LC medium to actively tune the coupling coefficient between two waveguides. First, we develop the device structure, theory of operation, and design procedure. Next, we summarize the fabrication and LC packaging procedure for these devices. Finally, we experimentally demonstrate amplitude modulation with 15.4-dB tap-port extinction within ±3.1 V for a 14-µm-long device at a 637-nm operating wavelength. These small-form-factor variable-tap devices provide a compact and low-power solution to integrated visible-light amplitude modulation and will enable future high-density integrated visible-light systems.

     
    more » « less
  4. The Pound–Drever–Hall (PDH) cavity-locking scheme has found prevalent uses in precision optical interferometry and laser frequency stabilization. A form of frequency modulation spectroscopy, PDH enjoys superior signal-to-noise recovery, large acquisition dynamic range, wide servo bandwidth, and robust rejection of spurious effects. However, residual amplitude modulation at the signal frequency, while significantly suppressed, still presents an important concern for further advancing the state-of-the-art performances. Here we present a simplified and improved scheme for PDH using an acousto-optic modulator to generate digital phase reference sidebands instead of the traditionally used electro-optic modulator approach. We demonstrate four key advantages: (1) the carrier and two modulation tones are individually synthesized and easily reconfigured, (2) robust and orthogonal control of the modulated optical field is applied directly to the amplitude and phase quadratures, (3) modulation synthesis, demodulation, and feedback are implemented in a self-contained and easily reproducible electronic unit, and (4) superior active and passive control of residual amplitude modulation is achieved, especially when the carrier power is vanishingly low. These distinct merits stimulate new ideas on how we optimally enact PDH for a wide range of applications.

     
    more » « less
  5. Abstract

    A key goal of heliophysics is to understand how cosmic rays propagate in the solar system’s complex, dynamic environment. One observable is solar modulation, i.e., how the flux and spectrum of cosmic rays change as they propagate inward. We construct an improved force-field model, taking advantage of new measurements of magnetic power spectral density by Parker Solar Probe to predict solar modulation within the Earth’s orbit. We find that modulation of cosmic rays between the Earth and Sun is modest, at least at solar minimum and in the ecliptic plane. Our results agree much better with the limited data on cosmic-ray radial gradients within Earth’s orbit than past treatments of the force-field model. Our predictions can be tested with forthcoming direct cosmic-ray measurements in the inner heliosphere by Parker Solar Probe and Solar Orbiter. They are also important for interpreting the gamma-ray emission from the Sun due to scattering of cosmic rays with solar matter and photons.

     
    more » « less