skip to main content


Title: Synthetic FM triplet for AM-free precision laser stabilization and spectroscopy

The Pound–Drever–Hall (PDH) cavity-locking scheme has found prevalent uses in precision optical interferometry and laser frequency stabilization. A form of frequency modulation spectroscopy, PDH enjoys superior signal-to-noise recovery, large acquisition dynamic range, wide servo bandwidth, and robust rejection of spurious effects. However, residual amplitude modulation at the signal frequency, while significantly suppressed, still presents an important concern for further advancing the state-of-the-art performances. Here we present a simplified and improved scheme for PDH using an acousto-optic modulator to generate digital phase reference sidebands instead of the traditionally used electro-optic modulator approach. We demonstrate four key advantages: (1) the carrier and two modulation tones are individually synthesized and easily reconfigured, (2) robust and orthogonal control of the modulated optical field is applied directly to the amplitude and phase quadratures, (3) modulation synthesis, demodulation, and feedback are implemented in a self-contained and easily reproducible electronic unit, and (4) superior active and passive control of residual amplitude modulation is achieved, especially when the carrier power is vanishingly low. These distinct merits stimulate new ideas on how we optimally enact PDH for a wide range of applications.

 
more » « less
NSF-PAR ID:
10485063
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
11
Issue:
1
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 58
Size(s):
["Article No. 58"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

     
    more » « less
  2. We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a “basic” configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a “generalized” configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal (across the free spectral range (FSR)) modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

     
    more » « less
  3. null (Ed.)
    On chip antennas with integrated electro-optic modulators (EOMs) are attractive for millimeter wave applications. Such EOMs are placed at the antenna feed and enable the mixing of the incoming millimeter wave (mm-wave) signal with an optical carrier. As such, the mm-wave capture is turned into an optical signal that can be easily processed for imaging using standard infrared cameras. Our proposed on-chip antenna with the EOM modulator operated at 94 GHz or 77 GHz, with the antenna tuned at that frequency. For high modulation efficiency, it is critical that the modulator region is as small as possible with the optical waveguide leading to the EOM, also being well-matched. Notably, the enhanced field at the antenna feed leads to higher modulation efficiency and sensitivity. Therefore, an optimum antenna design must hasve as large as possible field strength at the feed. 
    more » « less
  4. Electro-optic (EO) modulators rely on the interaction of optical and electrical signals with second-order nonlinear media. For the optical signal, this interaction can be strongly enhanced using dielectric slot–waveguide structures that exploit a field discontinuity at the interface between a high-index waveguide core and the low-index EO cladding. In contrast to this, the electrical signal is usually applied through conductive regions in the direct vicinity of the optical waveguide. To avoid excessive optical loss, the conductivity of these regions is maintained at a moderate level, thus leading to inherentRClimitations of the modulation bandwidth. In this paper, we show that these limitations can be overcome by extending the slot–waveguide concept to the modulating radio-frequency (RF) signal. Our device combines an RF slotline that relies onBaTiO3as a high-k dielectric material with a conventional silicon photonic slot waveguide and a highly efficient organic EO cladding material. In a proof-of-concept experiment, we demonstrate a 1 mm long Mach–Zehnder modulator that offers a 3 dB bandwidth of 76 GHz and a 6 dB bandwidth of 110 GHz along with a smallπ<#comment/>voltage of 1.3 V (Uπ<#comment/>L=1.3Vmm). We further demonstrate the viability of the device in a data-transmission experiment using four-state pulse-amplitude modulation (PAM4) at line rates up to 200 Gbit/s. Our first-generation devices leave vast room for further improvement and may open an attractive route towards highly efficient silicon photonic modulators that combine sub-1 mm device lengths with sub-1 V drive voltages and modulation bandwidths of more than 100 GHz.

     
    more » « less
  5. Optical isolators, while commonplace in bulk and fiber optical systems, remain a key missing component in integrated photonics. Isolation using magneto-optic materials has been difficult to integrate into complementary metal–oxide–semiconductor (CMOS) fabrication platforms, motivating the use of other paths to effective non-reciprocity such as temporal modulation. We demonstrate a non-reciprocal element comprising a pair of microring modulators and a microring phase shifter in an active silicon photonic process, which, in combination with standard bandpass filters, yields an isolator on-chip. Isolation up to 13 dB is measured with a 3 dB bandwidth of 2 GHz and insertion loss of 18 dB. We also show transmission of a 4 Gbps optical data signal through the isolator while retaining a wide-open eye diagram. This compact design, in combination with increased modulation efficiency, could enable modulator-based isolators to become a standard ‘black-box’ component in integrated photonics CMOS foundry platform component libraries.

     
    more » « less