skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expression-Based Diagnosis, Treatment Selection, and Drug Development for Breast Cancer
There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer.  more » « less
Award ID(s):
2221895 2234456
PAR ID:
10466598
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
13
ISSN:
1422-0067
Page Range / eLocation ID:
10561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gibbons, Sean M. (Ed.)
    ABSTRACT Microbiota studies have reported changes in the microbial composition of the breast upon cancer development. However, results are inconsistent and limited to the later phases of cancer development (after diagnosis). We analyzed and compared the resident bacterial taxa of histologically normal breast tissue (healthy, H, n  = 49) with those of tissues donated prior to (prediagnostic, PD, n  = 15) and after (adjacent normal, AN, n  = 49, and tumor, T, n  = 46) breast cancer diagnosis ( n total = 159). DNA was isolated from tissue samples and submitted for Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S gene. To infer bacterial function in breast cancer, we predicted the functional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional analysis revealed an intermediary taxonomic signature in the PD tissue relative to that of the H tissue, represented by shifts in Bacillaceae , Burkholderiaceae , Corynebacteriaceae , Streptococcaceae , and Staphylococcaceae . This compositional signature was enhanced in the AN and T tissues. We also identified significant metabolic reprogramming of the microbiota of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation analysis between host transcriptome profiling and microbial taxa and genes in H and PD tissues identified altered associations between the human host and mammary microbiota in PD tissue compared with H tissue. These findings suggest that compositional shifts in bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early events in breast cancer development that are potentially linked with cancer susceptibility. IMPORTANCE The goal of this study was to determine the role of resident breast tissue bacteria in breast cancer development. We analyzed breast tissue bacteria in healthy breast tissue and breast tissue donated prior to (precancerous) and after (postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancerous and postcancerous breast tissues demonstrated differences in the amounts of breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These differences in function are further emphasized by altered associations of the breast tissue bacteria with gene expression in the human host prior to cancer development. Collectively, these analyses identified shifts in bacterial abundance and metabolic function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a therapeutic target in breast cancer prevention. 
    more » « less
  2. In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC. 
    more » « less
  3. Breast cancer treatment can be improved with biomarkers for early detection and individualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had concordant expression in both tumors and breast cancer patient blood samples compared with the normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be applied to many cancer types. 
    more » « less
  4. Finding the network biomarkers of cancers and the analysis of cancer driving genes that are involved in these biomarkers are essential for understanding the dynamics of cancer. Clusters of genes in co-expression networks are commonly known as functional units. This work is based on the hypothesis that the dense clusters or communities in the gene co-expression networks of cancer patients may represent functional units regarding cancer initiation and progression. In this study, RNA-seq gene expression data of three cancers - Breast Invasive Carcinoma (BRCA), Colorectal Adenocarcinoma (COAD) and Glioblastoma Multiforme (GBM) - from The Cancer Genome Atlas (TCGA) are used to construct gene co-expression networks using Pearson Correlation. Six well-known community detection algorithms are applied on these networks to identify communities with five or more genes. A permutation test is performed to further mine the communities that are conserved in other cancers, thus calling them conserved communities. Then survival analysis is performed on clinical data of three cancers using the conserved community genes as prognostic co-variates. The communities that could distinguish the cancer patients between high- and low-risk groups are considered as cancer biomarkers. In the present study, 16 such network biomarkers are discovered. 
    more » « less
  5. Breast cancer is highly sporadic and heterogeneous in nature. Even the patients with same clinical stage do not cluster together in terms of genomic profiles such as mRNA expression. In order to prevent and cure breast cancer completely, it is essential to decipher the detailed heterogeneity of breast cancer at genomic level. Putting the cancer patients on a time scale, which represents the trajectory of cancer development, may help discover the detailed heterogeneity. This in turn would help establish the mechanisms for prevention and complete cure of breast cancer. The goal of this study is to discover the heterogeneity of breast cancer by ordering the cancer patients using pseudotime. This is achieved through two objectives: First, a computational framework is developed to place the cancer patients on a time scale, meaning construct a trajectory of cancer development, by inferring pseudotime from static mRNA expression data; Second, discovering breast cancer heterogeneity at different time periods of the trajectory using statistical and machine learning techniques. In this study, the trajectory of breast cancer progression was constructed using static mRNA expression profiles of 1072 breast cancer patients by inferring pseudotime. Three sets of key genes discovered using supervised machine learning techniques are used to develop the trajectories. The first set of genes are PAM50 genes which is available in literature. The second and third sets of genes were discovered in the present study using the clinical stages of breast cancer (Stage-I, Stage-II, Stage-III, and Stage-IV). The proposed computational framework has the capability of deciphering heterogeneity in breast cancer at a granular level. The results also show the existence of multiple parallel trajectories at different time periods of cancer development or progression. 
    more » « less