Eel-like fish can exhibit efficient swimming with comparatively low metabolic cost by utilizing sub-ambient pressure areas in the trough of body waves to generate thrust, effectively pulling themselves through the surrounding water. While this is understood at the fish’s preferred swimming speed, little is known about the mechanism over a full range of natural swimming speeds. We compared the swimming kinematics, hydrodynamics, and metabolic activity of juvenile coral catfish (Plotosus lineatus) across relative swimming speeds spanning two orders of magnitude from 0.2 to 2.0 body lengths (BL) per second. We used experimentally derived velocity fields to compute pressure fields and components of thrust along the body. At low speeds, thrust was primarily generated through positive pressure pushing forces. In contrast, increasing swimming speeds caused a shift in the recruitment of push and pull propulsive forces whereby sub-ambient pressure gradients contributed up to 87% of the total thrust produced during one tail-beat cycle past 0.5 BL s−1. This shift in thrust production corresponded to a sharp decline in the overall cost of transport and suggests that pull-dominated thrust in anguilliform swimmers is subject to a minimum threshold below which drag-based mechanisms are less effective.
more »
« less
Dissolution-driven propulsion of floating solids
We show that unconstrained asymmetric dissolving solids floating in a fluid can move rectilinearly as a result of attached density currents which occur along their inclined surfaces. Solids in the form of boats composed of centimeter-scale sugar and salt slabs attached to a buoy are observed to move rapidly in water with speeds up to 5 mm/s determined by the inclination angle and orientation of the dissolving surfaces. While symmetric boats drift slowly, asymmetric boats are observed to accelerate rapidly along a line before reaching a terminal velocity when their drag matches the thrust generated by dissolution. By visualizing the flow around the body, we show that the boat velocity is always directed opposite to the horizontal component of the density current. We derive the thrust acting on the body from its measured kinematics and show that the propulsion mechanism is consistent with the unbalanced momentum generated by the attached density current. We obtain an analytical formula for the body speed depending on geometry and material properties and show that it captures the observed trends reasonably. Our analysis shows that the gravity current sets the scale of the body speed consistent with our observations, and we estimate that speeds can grow slowly as the cube root of the length of the inclined dissolving surface. The dynamics of dissolving solids demonstrated here applies equally well to solids undergoing phase change and may enhance the drift of melting icebergs, besides unraveling a primal strategy by which to achieve locomotion in active matter.
more »
« less
- Award ID(s):
- 1805398
- PAR ID:
- 10466605
- Publisher / Repository:
- National Academy of Science
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 32
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2301947120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We conduct two-dimensional particle-in-cell simulations to investigate the scattering of electron heat flux by self-generated oblique electromagnetic waves. The heat flux is modeled as a bi-kappa distribution with aT∥>T⊥temperature anisotropy maintained by continuous injection at the boundaries. The anisotropic distribution excites oblique whistler waves and filamentary-like Weibel instabilities. Electron velocity distributions taken after the system has reached a steady state show that these instabilities inhibit the heat flux and drive the total distributions toward isotropy. Electron trajectories in velocity space show a circular-like diffusion along constant energy surfaces in the wave frame. The key parameter controlling the scattering rate is the average speed, or drift speedvd, of the heat flux compared with the electron Alfvén speedvAe, with higher drift speeds producing stronger fluctuations and a more significant reduction of the heat flux. Reducing the density of the electrons carrying the heat flux by 50% does not significantly affect the scattering rate. A scaling law for the electron scattering rate versusvd/vAeis deduced from the simulations. The implications of these results for understanding energetic electron transport during energy release in solar flares are discussed.more » « less
-
We investigate the dynamics of a magnetoelastic robot with a dipolar magnetic head and a slender elastic body as it performs undulatory strokes and burrows through water-saturated granular beds. The robot is actuated by an oscillating magnetic field and moves forward when the stroke amplitude increases above a critical threshold. By visualizing the medium, we show that the undulating body fluidizes the bed, resulting in the appearance of a dynamic burrow, which rapidly closes in behind the moving robot as the medium loses energy. We investigate the applicability of Lighthill's elongated body theory of fish locomotion, and estimate the contribution of thrust generated by the undulating body and the drag incorporating the granular volume fraction-dependent effective viscosity of the medium. The projected speeds are found to be consistent with the measured speeds over a range of frequencies and amplitudes above the onset of forward motion. However, systematic deviations are found to grow with increasing driving, pointing to a need for further sophisticated modeling of the medium-structure interactions.more » « less
-
Abstract Several fishes swim by undulating a thin and elongated median fin while the body is mostly kept straight, allowing them to perform forward and directional maneuvers. We used a robotic vessel with similar fin propulsion to determine the thrust scaling and efficiency. Using precise force and swimming kinematics measurements with the robotic vessel, the thrust generated by the undulating fin was found to scale with the square of the relative velocity between the free streaming flow and the wave speed. A hydrodynamic efficiency is presented based on propulsive force measurements and modelling of the power required to oscillate the fin laterally. It was found that the propulsive efficiency has a broadly high performance versus swimming speed, with a maximum efficiency of 75%. An expression to calculate the swimming speed over wave speed was found to depend on two parameters: A p / A e (ratio between body frontal area to fin swept area) and C D / C x (ratio of body drag to fin thrust coefficient). The models used to calculate propulsive force and free-swimming speed were compared with experimental results. The broader impacts of these results are discussed in relation to morphology and the function of undulating fin swimmers. In particular, we suggest that the ratio of fin and body height found in natural swimmers could be due to a trade-off between swimming efficiency and swimming speed.more » « less
-
Abstract Laboratory measurements of droplet size, velocity, and accelerations generated by mechanically and wind‐forced water breaking waves are reported. The wind free stream velocity is up to 12 m/s, leading to wave slopes from 0.15 to 0.35 at a fetch of 23 m. The ratio of wind free stream and wave phase speed ranges from 5.9 to 11.1, depending on the mechanical wave frequency. The droplet size distribution in all configurations can be represented by two power laws,N(d) ∝ d−1for drops from 30 to 600 μm andN(d) ∝ d−4above 600 μm. The horizontal and vertical droplet velocities appear correlated, with drops with slower horizontal speed more likely to move upward. The velocity and acceleration distributions are found to be asymmetric, with the velocity probability density functions (PDFs) being described by a normal‐inverse‐Gaussian distribution. The horizontal acceleration PDF are found to follow a shape close to the one predicted for small particles in homogeneous and isotropic turbulence, while the vertical distribution follows an asymmetric normal shape, showing that both acceleration components are controlled by different physical processes.more » « less
An official website of the United States government

