skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fostering better coding practices for data scientists
Many data science students and practitioners are reluctant to adopt good coding practices as long as the code ‘works.’ However, code standards are an important part of modern data science practice, and they play an essential role in the development of data acumen. Good coding practices lead to more reliable code and save more time than they cost, making them important even for beginners. We believe that principled coding is vital for quality data science practice. To effectively instill these practices within academic programs, instructors and programs need to begin establishing these practices early, to reinforce them often, and to hold themselves to a higher standard while guiding students. We describe key aspects of good coding practices for data science, illustrating with examples in R and in Python, though similar standards are applicable to other software environments. Practical coding guidelines are organized into a top ten list.  more » « less
Award ID(s):
1923388
PAR ID:
10466634
Author(s) / Creator(s):
; ;
Editor(s):
Meng, X-L
Publisher / Repository:
Harvard Data Science Review
Date Published:
Journal Name:
Harvard Data Science Review
Volume:
5
Issue:
3
ISSN:
2644-2353
Subject(s) / Keyword(s):
data acumen, data science, data science practice, data science education, code quality, code style
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Current content and practice standards call for the use of argumentation in the teaching of mathematics and science. This project is focused on extending the collective argumentation framework for the teaching of mathematics to the teaching of coding. Teachers at our partnering school district have completed the first design of a prototype CALC course where they used collective argumentation to learn how to code educational robotics. At the end of this course, the teachers developed lesson plans that were implemented in grades 3, 4 and 5.This paper and conference presentation focused on the research question, how do elementary school teachers use the CALC approach to support their students’ learning of coding, mathematics, and science content and practices? Overall, the implementation of the CALC approach demonstrated the growth of the teachers in their ability to teach coding as a reasoning process and as a means to integrate it into everyday classroom activities. 
    more » « less
  2. When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices. 
    more » « less
  3. When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices. 
    more » « less
  4. Ruis, Andrew R.; Lee, Seung B. (Ed.)
    Coding data—defining concepts and identifying where they occur in data—is a critical aspect of qualitative data analysis, and especially so in quantitative ethnography. Coding is a central process for creating meaning from data, and while much has been written about coding methods and theory, relatively little has been written about what constitutes best practices for fair and valid coding, what justifies those practices, and how to implement them. In this paper, our goal is not to address these issues comprehensively, but to provide guidelines for good coding practice and to highlight some of the issues and key questions that quantitative ethnographers and other researchers should consider when coding data. 
    more » « less
  5. Abstract The Next Generation Science Standards (NGSS) provide a vision for contemporary science education with all students, including the fast‐growing population of multilingual learners in the United States K‐12 context. The shifts heralded by the NGSS have resulted in significant changes to English language proficiency (ELP) or English language development (ELD) standards so they better align with content standards and support all students, including multilingual learners, to engage in language‐rich disciplinary practices (e.g., arguing from evidence). The purpose of this article is to describe ELP/ELD standards aligned with content standards. Specifically, we describe how the policy initiatives of the NGSS as science standards and WIDA 2020 as ELP/ELD standards reflect each other in terms of conceptual foundations and architecture of the standards guiding classroom practices. By becoming more explicitly aware of how science standards and language standards present “mirror images” of each other, science educators will be better positioned to collaborate with their language education colleagues. As this article is intended to engage science educators who are generally familiar with the NGSS but likely new to ELP/ELD standards, we describe WIDA 2020 in detail and in ways accessible to a broad audience. In doing so, we aim to ensure the science education and language education communities are coordinated in their efforts to promote equitable science learning for all students, including multilingual learners. We close with implications for research, policy, and practice through collaboration between science education (as well as other content areas) and language education. 
    more » « less