Scientific discovery is a complex cognitive process that has driven human knowledge and technological progress for centuries. While artificial intelligence (AI) has made significant advances in automating aspects of scientific reasoning, simulation, and experimentation, we still lack integrated AI systems capable of performing autonomous long-term scientific research and discovery. This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks. We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery, including the need for science-focused AI agents, improved benchmarks and evaluation metrics, multimodal scientific representations, and unified frameworks combining reasoning, theorem proving, and data-driven modeling. Addressing these challenges could lead to transformative AI tools to accelerate progress across disciplines towards scientific discovery. 
                        more » 
                        « less   
                    
                            
                            Predicting the Future of AI with AI: High-Quality link prediction in an exponentially growing knowledge network
                        
                    
    
            A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could significantly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over the last years, making it challenging for human researchers to keep track of the progress. Here, we use AI techniques to predict the future research directions of AI itself. We develop a new graph-based benchmark based on real-world data -- the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 100,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. It indicates a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113468
- PAR ID:
- 10466657
- Publisher / Repository:
- arxiv
- Date Published:
- Journal Name:
- Nature machine intelligence
- ISSN:
- 2522-5839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Strong artificial intelligence (AI) is envisioned to possess general cognitive abilities and scientific creativity comparable to human intelligence, encompassing both knowledge acquisition and problem-solving. While remarkable progress has been made in weak AI, the realization of strong AI remains a topic of intense debate and critical examination. In this paper, we explore pivotal innovations in the history of astronomy and physics, focusing on the discovery of Neptune and the concept of scientific revolutions as perceived by philosophers of science. Building on these insights, we introduce a simple theoretical and statistical framework of weak beliefs, termed the Transformational Belief (TB) framework, designed as a foundation for modeling scientific creativity. Through selected illustrative examples in statistical science, we demonstrate the TB framework's potential as a promising foundation for understanding, analyzing, and even fostering creativity -- paving the way toward the development of strong AI. We conclude with reflections on future research directions and potential advancements.more » « less
- 
            Introduction: Artificial intelligence (AI) technologies continue to attract interest from a broad range of disciplines in recent years, including health. The increase in computer hardware and software applications in medicine, as well as digitization of health-related data together fuel progress in the development and use of AI in medicine. This progress provides new opportunities and challenges, as well as directions for the future of AI in health. Objective: The goals of this survey are to review the current state of AI in health, along with opportunities, challenges, and practical implications. This review highlights recent developments over the past five years and directions for the future. Methods: Publications over the past five years reporting the use of AI in health in clinical and biomedical informatics journals, as well as computer science conferences, were selected according to Google Scholar citations. Publications were then categorized into five different classes, according to the type of data analyzed. Results: The major data types identified were multi-omics, clinical, behavioral, environmental and pharmaceutical research and development (R&D) data. The current state of AI related to each data type is described, followed by associated challenges and practical implications that have emerged over the last several years. Opportunities and future directions based on these advances are discussed. Conclusion: Technologies have enabled the development of AI-assisted approaches to healthcare. However, there remain challenges. Work is currently underway to address multi-modal data integration, balancing quantitative algorithm performance and qualitative model interpretability, protection of model security, federated learning, and model bias.more » « less
- 
            Abstract As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful andusedtools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts. Significance StatementWe used a mixed-methods quantitative and qualitative approach to understand how National Weather Service (NWS) forecasters 1) make guidance use decisions within their operational forecasting process and 2) assess the trustworthiness of prototype guidance developed using artificial intelligence (AI). When taken as a whole, our findings illustrate that forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically and suggest that developers must center the end user when creating new AI guidance tools to ensure that the developed tools are useful andused.more » « less
- 
            Artificial intelligence (AI) has immense potential spanning research and industry. AI applications abound and are expanding rapidly, yet the methods, performance, and understanding of AI are in their infancy. Researchers face vexing issues such as how to improve performance, transferability, reliability, comprehensibility, and how better to train AI models with only limited data. Future progress depends on advances in hardware accelerators, software frameworks, system and architectures, and creating cross-cutting expertise between scientific and AI domains. Open Compass is an exploratory research project to conduct academic pilot studies on an advanced engineering testbed for artificial intelligence, the Compass Lab, culminating in the development and publication of best practices for the benefit of the broad scientific community. Open Compass includes the development of an ontology to describe the complex range of existing and emerging AI hardware technologies and the identification of benchmark problems that represent different challenges in training deep learning models. These benchmarks are then used to execute experiments in alternative advanced hardware solution architectures. Here we present the methodology of Open Compass and some preliminary results on analyzing the effects of different GPU types, memory, and topologies for popular deep learning models applicable to image processing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    