skip to main content


This content will become publicly available on May 3, 2024

Title: Evaluation of the Toyota Human Support Robot (HSR) for Social Interaction and Learning
Tele-operated social robots (telerobots) offer an innovative means of allowing children who are medically restricted to their homes (MRH) to return to their local schools and physical communities. Most commercially available telerobots have three foundational features that facilitate child–robot interaction: remote mobility, synchronous two-way vision capabilities, and synchronous two-way audio capabilities. We conducted a comparative analysis between the Toyota Human Support Robot (HSR) and commercially available telerobots, focusing on these foundational features. Children who used these robots and these features on a daily basis to attend school were asked to pilot the HSR in a simulated classroom for learning activities. As the HSR has three additional features that are not available on commercial telerobots: (1) pan-tilt camera, (2) mapping and autonomous navigation, and (3) robot arm and gripper for children to “reach” into remote environments, participants were also asked to evaluate the use of these features for learning experiences. To expand on earlier work on the use of telerobots by remote children, this study provides novel empirical findings on (1) the capabilities of the Toyota HSR for robot-mediated learning similar to commercially available telerobots and (2) the efficacy of novel HSR features (i.e., pan-tilt camera, autonomous navigation, robot arm/hand hardware) for future learning experiences. We found that among our participants, autonomous navigation and arm/gripper hardware were rated as highly valuable for social and learning activities.  more » « less
Award ID(s):
2136847
NSF-PAR ID:
10466728
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Common Ground Publishing
Date Published:
Journal Name:
The International Journal of Technology, Knowledge, and Society
Volume:
19
Issue:
1
ISSN:
1832-3669
Page Range / eLocation ID:
21 to 52
Subject(s) / Keyword(s):
["Social Robotics, Robot-Mediated Learning, Health, Access, Equity, Virtual Inclusion"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social telepresence robots (i.e., telerobots) are used for social and learning experiences by children. However, most (if not all) commercially available telerobot bodies were designed for adults in corporate or healthcare settings. Due to an adult-focused market, telerobot design has typically not considered important factors such as age and physical aspect in the design of robot bodies. To better understand how peer interactants can facilitate the identities of remote children through personalization of robot bodies, we conducted an exploratory study to evaluate collaborative robot personalization. In this study, child participants (N=28) attended an interactive lesson on robots in our society. After the lesson, participants interacted with two telerobots for personalization activities and a robot fashion show. Finally, participants completed an artwork activity on robot design. Initial findings from this study will inform our continued work on telepresence robots for virtual inclusion and improved educational experiences of remote children and their peers. 
    more » « less
  2. Background

    COVID-19 has severely impacted health in vulnerable demographics. As communities transition back to in-person work, learning, and social activities, pediatric patients who are restricted to their homes due to medical conditions face unprecedented isolation. Prior to the pandemic, it was estimated that each year, over 2.5 million US children remained at home due to medical conditions. Confronting gaps in health and technical resources is central to addressing the challenges faced by children who remain at home. Having children use mobile telemedicine units (telerobots) to interact with their outside environment (eg, school and play, etc) is increasingly recognized for its potential to support children’s development. Additionally, social telerobots are emerging as a novel form of telehealth. A social telerobot is a tele-operated unit with a mobile base, 2-way audio/video capabilities, and some semiautonomous features.

    Objective

    In this paper, we aimed to provide a critical review of studies focused on the use of social telerobots for pediatric populations.

    Methods

    To examine the evidence on telerobots as a telehealth intervention, we conducted electronic and full-text searches of private and public databases in June 2010. We included studies with the pediatric personal use of interactive telehealth technologies and telerobot studies that explored effects on child development. We excluded telehealth and telerobot studies with adult (aged >18 years) participants.

    Results

    In addition to telehealth and telerobot advantages, evidence from the literature suggests 3 promising robot-mediated supports that contribute to optimal child development—belonging, competence, and autonomy. These robot-mediated supports may be leveraged for improved pediatric patient socioemotional development, well-being, and quality-of-life activities that transfer traditional developmental and behavioral experiences from organic local environments to the remote child.

    Conclusions

    This review contributes to the creation of the first pediatric telehealth taxonomy of care that includes the personal use of telehealth technologies as a compelling form of telehealth care.

     
    more » « less
  3. null (Ed.)
    The endoscopic camera of a surgical robot pro- vides surgeons with a magnified 3D view of the surgical field, but repositioning it increases mental workload and operation time. Poor camera placement contributes to safety-critical events when surgical tools move out of the view of the camera. This paper presents a proof of concept of an autonomous camera system for the Raven II surgical robot that aims to reduce surgeon workload and improve safety by providing an optimal view of the workspace showing all objects of interest. This system uses transfer learning to localize and classify objects of interest within the view of a stereoscopic camera. The positions and centroid of the objects are estimated and a set of control rules determines the movement of the camera towards a more desired view. Our perception module had an accuracy of 61.21% overall for identifying objects of interest and was able to localize both graspers and multiple blocks in the environment. Comparison of the commands proposed by our system with the desired commands from a survey of 13 participants indicates that the autonomous camera system proposes appropriate movements for the tilt and pan of the camera. 
    more » « less
  4. We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view-an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration.

     
    more » « less
  5. Telepresence technology enables users to be virtually present in another location at the same time through video streaming. This kind of user interaction is further enhanced through mobility by driving remotely to form what is called a Telepresence robot. These innovative machines connect individuals with restricted mobility and increase social interaction, collaboration and active participation. However, operating and navigating these robots by individuals who have little knowledge and map of the remote environment is challenging. Avoiding obstacles via the narrow camera view and manual remote operation is a cumbersome task. Moreover, the users lack the sense of immersion while they are busy maneuvering via the real-time video feed and, thereby, decreasing their capability to handle different tasks. This demo presents a simultaneous mapping and autonomous driving virtual reality robot. Leveraging the 2D Lidar sensor, we generate two dimensional occupancy grid maps via SLAM and provide assisted navigation in reducing the onerous task of avoiding obstacles. The attitude of the robotic head with a camera is remotely controlled via the virtual reality headset. Remote users will be able to gain a visceral understanding of the environment while teleoperating the robot. 
    more » « less