skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of the Toyota Human Support Robot (HSR) for Social Interaction and Learning
Tele-operated social robots (telerobots) offer an innovative means of allowing children who are medically restricted to their homes (MRH) to return to their local schools and physical communities. Most commercially available telerobots have three foundational features that facilitate child–robot interaction: remote mobility, synchronous two-way vision capabilities, and synchronous two-way audio capabilities. We conducted a comparative analysis between the Toyota Human Support Robot (HSR) and commercially available telerobots, focusing on these foundational features. Children who used these robots and these features on a daily basis to attend school were asked to pilot the HSR in a simulated classroom for learning activities. As the HSR has three additional features that are not available on commercial telerobots: (1) pan-tilt camera, (2) mapping and autonomous navigation, and (3) robot arm and gripper for children to “reach” into remote environments, participants were also asked to evaluate the use of these features for learning experiences. To expand on earlier work on the use of telerobots by remote children, this study provides novel empirical findings on (1) the capabilities of the Toyota HSR for robot-mediated learning similar to commercially available telerobots and (2) the efficacy of novel HSR features (i.e., pan-tilt camera, autonomous navigation, robot arm/hand hardware) for future learning experiences. We found that among our participants, autonomous navigation and arm/gripper hardware were rated as highly valuable for social and learning activities.  more » « less
Award ID(s):
2136847
PAR ID:
10466728
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Common Ground Publishing
Date Published:
Journal Name:
The International Journal of Technology, Knowledge, and Society
Volume:
19
Issue:
1
ISSN:
1832-3669
Page Range / eLocation ID:
21 to 52
Subject(s) / Keyword(s):
Social Robotics, Robot-Mediated Learning, Health, Access, Equity, Virtual Inclusion
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social telepresence robots (i.e., telerobots) are used for social and learning experiences by children. However, most (if not all) commercially available telerobot bodies were designed for adults in corporate or healthcare settings. Due to an adult-focused market, telerobot design has typically not considered important factors such as age and physical aspect in the design of robot bodies. To better understand how peer interactants can facilitate the identities of remote children through personalization of robot bodies, we conducted an exploratory study to evaluate collaborative robot personalization. In this study, child participants (N=28) attended an interactive lesson on robots in our society. After the lesson, participants interacted with two telerobots for personalization activities and a robot fashion show. Finally, participants completed an artwork activity on robot design. Initial findings from this study will inform our continued work on telepresence robots for virtual inclusion and improved educational experiences of remote children and their peers. 
    more » « less
  2. BackgroundCOVID-19 has severely impacted health in vulnerable demographics. As communities transition back to in-person work, learning, and social activities, pediatric patients who are restricted to their homes due to medical conditions face unprecedented isolation. Prior to the pandemic, it was estimated that each year, over 2.5 million US children remained at home due to medical conditions. Confronting gaps in health and technical resources is central to addressing the challenges faced by children who remain at home. Having children use mobile telemedicine units (telerobots) to interact with their outside environment (eg, school and play, etc) is increasingly recognized for its potential to support children’s development. Additionally, social telerobots are emerging as a novel form of telehealth. A social telerobot is a tele-operated unit with a mobile base, 2-way audio/video capabilities, and some semiautonomous features. ObjectiveIn this paper, we aimed to provide a critical review of studies focused on the use of social telerobots for pediatric populations. MethodsTo examine the evidence on telerobots as a telehealth intervention, we conducted electronic and full-text searches of private and public databases in June 2010. We included studies with the pediatric personal use of interactive telehealth technologies and telerobot studies that explored effects on child development. We excluded telehealth and telerobot studies with adult (aged >18 years) participants. ResultsIn addition to telehealth and telerobot advantages, evidence from the literature suggests 3 promising robot-mediated supports that contribute to optimal child development—belonging, competence, and autonomy. These robot-mediated supports may be leveraged for improved pediatric patient socioemotional development, well-being, and quality-of-life activities that transfer traditional developmental and behavioral experiences from organic local environments to the remote child. ConclusionsThis review contributes to the creation of the first pediatric telehealth taxonomy of care that includes the personal use of telehealth technologies as a compelling form of telehealth care. 
    more » « less
  3. Soft robots are inherently compliant and have a strong potential to realize human-friendly and safe robots. Despite continued research highlighting the potential of soft robots, they remain largely confined to laboratory settings. In this work, inspired by spider monkeys' tails, we propose a hybrid soft robot (HSR) design. We detail the design objectives and methodology to improve the controllable stiffness range and achieve independent stiffness and shape control. We extend the curve parametric approach to obtain a kinematic model of the proposed HSR. We experimentally demonstrate that the proposed HSR has about 100% stiffness range increase than a previous soft robot design with identical physical dimensions. In addition, we empirically map HSR's bending shape-pressure-stiffness and present an application example-a soft robotic gripper-to demonstrate the decoupled nature of stiffness and shape variations. Experimental results show that proposed HSR can be successfully 
    more » « less
  4. We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view-an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration. 
    more » « less
  5. Tele-operated collaborative robots are used by many children for academic learning. However, as child-directed play is important for social-emotional learning, it is also important to understand how robots can facilitate play. In this article, we present findings from an analysis of a national, multi-year case study, where we explore how 53 children in grades K–12 (n= 53) used robots for self-directed play activities. The contributions of this article are as follows. First, we present empirical data on novel play scenarios that remote children created using their tele-operated robots. These play scenarios emerged in five categories of play: physical, verbal, visual, extracurricular, and wished-for play. Second, we identify two unique themes that emerged from the data—robot-mediated play as a foundational support of general friendships and as a foundational support of self-expression and identity. Third, our work found that robot-mediated play provided benefits similar to in-person play. Findings from our work will inform novel robot and HRI design for tele-operated and social robots that facilitate self-directed play. Findings will also inform future interdisciplinary studies on robot-mediated play. 
    more » « less