skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Hard Optimization Problems: A Data Generation Perspective
Optimization problems are ubiquitous in our societies and are present in almost every segment of the economy. Most of these optimization problems are NP-hard and computationally demanding, often requiring approximate solutions for large-scale instances. Machine learning frameworks that learn to approximate solutions to such hard optimization problems are a potentially promising avenue to address these difficulties, particularly when many closely related problem instances must be solved repeatedly. Supervised learning frameworks can train a model using the outputs of pre-solved instances. However, when the outputs are themselves approximations, when the optimization problem has symmetric solutions, and/or when the solver uses randomization, solutions to closely related instances may exhibit large differences and the learning task can become inherently more difficult. This paper demonstrates this critical challenge, connects the volatility of the training data to the ability of a model to approximate it, and proposes a method for producing (exact or approximate) solutions to optimization problems that are more amenable to supervised learning tasks. The effectiveness of the method is tested on hard non-linear nonconvex and discrete combinatorial problems.  more » « less
Award ID(s):
2007164
PAR ID:
10337576
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 34 (NeurIPS 2021)
Volume:
34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies how to train machine-learning models that directly approximate the optimal solutions of constrained optimization problems. This is an empirical risk minimization under constraints, which is challenging as training must balance optimality and feasibility conditions. Supervised learning methods often approach this challenge by training the model on a large collection of pre-solved instances. This paper takes a different route and proposes the idea of Primal-Dual Learning (PDL), a self-supervised training method that does not require a set of pre-solved instances or an optimization solver for training and inference. Instead, PDL mimics the trajectory of an Augmented Lagrangian Method (ALM) and jointly trains primal and dual neural networks. Being a primal-dual method, PDL uses instance-specific penalties of the constraint terms in the loss function used to train the primal network. Experiments show that, on a set of nonlinear optimization benchmarks, PDL typically exhibits negligible constraint violations and minor optimality gaps, and is remarkably close to the ALM optimization. PDL also demonstrated improved or similar performance in terms of the optimality gaps, constraint violations, and training times compared to existing approaches. 
    more » « less
  2. Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified. 
    more » « less
  3. We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method—which is valid only in the case of continuous uncertainty—is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems. 
    more » « less
  4. Finding Nash equilibrial policies for two-player differential games requires solving Hamilton-Jacobi-Isaacs (HJI) PDEs. Self-supervised learning has been used to approximate solutions of such PDEs while circumventing the curse of dimensionality. However, this method fails to learn discontinuous PDE solutions due to its sampling nature, leading to poor safety performance of the resulting controllers in robotics applications when player rewards are discontinuous. This paper investigates two potential solutions to this problem: a hybrid method that leverages both supervised Nash equilibria and the HJI PDE, and a value-hardening method where a sequence of HJIs are solved with a gradually hardening reward. We compare these solutions using the resulting generalization and safety performance in two vehicle interaction simulation studies with 5D and 9D state spaces, respectively. Results show that with informative supervision (e.g., collision and near-collision demonstrations) and the low cost of self-supervised learning, the hybrid method achieves better safety performance than the supervised, self-supervised, and value hardening approaches on equal computational budget. Value hardening fails to generalize in the higher-dimensional case without informative supervision. Lastly, we show that the neural activation function needs to be continuously differentiable for learning PDEs and its choice can be case dependent. 
    more » « less
  5. Constraint satisfaction problems are an important area of computer science. Many of these problems are in the complexity class NP which is exponentially hard for all known methods, both for worst cases and often typical. Fundamentally, the lack of any guided local minimum escape method ensures the hardness of both exact and approximate optimization classically, but the intuitive mechanism for approximation hardness in quantum algorithms based on Hamiltonian time evolution is poorly understood. We explore this question using the prototypically hard MAX-3-XORSAT problem class. We conclude that the mechanisms for quantum exact and approximation hardness are fundamentally distinct. We qualitatively identify why traditional methods such as quantum adiabatic optimization are not good approximation algorithms. We propose a new spectral folding optimization method that does not suffer from these issues and study it analytically and numerically. We consider random rank-3 hypergraphs including extremal planted solution instances, where the ground state satisfies an anomalously high fraction of constraints compared to truly random problems. We show that, if we define the energy to be E=Nunsat−Nsat, then spectrally folded quantum optimization will return states with energy E≤AEGS (where EGS is the ground state energy) in polynomial time, where conservatively, A≃0.6. We thoroughly benchmark variations of spectrally folded quantum optimization for random classically approximation-hard (planted solution) instances in simulation, and find performance consistent with this prediction. We do not claim that this approximation guarantee holds for all possible hypergraphs, though our algorithm's mechanism can likely generalize widely. These results suggest that quantum computers are more powerful for approximate optimization than had been previously assumed. 
    more » « less