skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Latine health and development in the digital age: assets-based inclusive design as a social movement for equitable distributions of power
Latine Health and Development in the Digital Age: Assets-Based Inclusive Design as a Social Movement for Equitable Distributions of Power → Inclusive design of digital platforms may increase equitable access to healthcare services and dismantle systemic barriers for Latine communities. → Ethical identification of assets in the design process can promote action through internal change or external allyship. → The ABID framework is designed to minimize technology-based amplifications of existing inequities.  more » « less
Award ID(s):
2136847
NSF-PAR ID:
10466734
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Interactions
Volume:
29
Issue:
5
ISSN:
1072-5520
Page Range / eLocation ID:
39 to 43
Subject(s) / Keyword(s):
["Digital health","design","equity","inclusion"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital technologies shape how individuals, communities, and soci- eties interact; yet they are far from equitable. This paper presents a framework that challenges the “one-view-fits-all” design approach to digital health tools. We explore systemic issues of power to eval- uate the multidimensional indicators of Latino health outcomes and how technology can support well-being. Our proposed frame- work enables designers to gain a better understanding of how marginalized communities use digital technologies to navigate unique challenges. As an innovative and possibly controversial approach to assets-based design, we stress the importance of in- dustry and academia self-reflection on their organization’s role in the marginalization of communities in addition to valuing the lived experiences of marginalized communities. Through this approach, designers may avoid amplifying structural and health inequities in marginalized communities. 
    more » « less
  2. null (Ed.)
    Digital technologies shape how individuals, communities, and soci- eties interact; yet they are far from equitable. This paper presents a framework that challenges the “one-view-fits-all” design approach to digital health tools. We explore systemic issues of power to eval- uate the multidimensional indicators of Latino health outcomes and how technology can support well-being. Our proposed frame- work enables designers to gain a better understanding of how marginalized communities use digital technologies to navigate unique challenges. As an innovative and possibly controversial approach to assets-based design, we stress the importance of in- dustry and academia self-reflection on their organization’s role in the marginalization of communities in addition to valuing the lived experiences of marginalized communities. Through this approach, designers may avoid amplifying structural and health inequities in marginalized communities. 
    more » « less
  3. An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, https://www.cur.org/assets/1/23/01-01_TOC_SPUR_Winter21.pdf Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285. 
    more » « less
  4. As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, provide attribution for past and future work and do not perpetuate the legacy of colonial practices and historic inequalities found in many physical natural history collections. Recent reports from the Biodiversity Collections Network (BCoN 2019) and the National Academies of Science, Engineering and Medicine (National Academies of Sciences, Engineering, and Medicine 2020) specifically address workforce needs in support of the DES. To address workforce training and inclusivity within the context of global data integration, the Alliance for Biodiversity Knowledge included a topic on Workforce capacity development and inclusivity in Phase 2 of the consultation on Converging Digital Specimens and Extended Specimens - Towards a global specification for data integration. Across these efforts, several common themes have emerged relative to workforce training and the DES. A call for a community needs assessment: As a community, we have several unknowns related to the current collections workforce and training needs. We would benefit from a baseline assessment of collections professionals to define current job responsibilities, demographics, education and training, incentives, compensation, and benefits. This includes an evaluation of current employment prospects and opportunities. Defined skills and training for the 21st century collections professional: We need to be proactive and define the 21st century workforce skills necessary to support the development and implementation of the DES. When we define the skills and content needs we can create appropriate training opportunities that include scalable materials for capacity building, educational materials that develop relevant skills, unifying protocols across the DES network, and best practices guidance for professionals. Training for data end-users: We need to train data end-users in biodiversity and data science at all levels of formal and informal education from primary and secondary education through the existing workforce. This includes developing training and educational materials, creating data portals, and building analyses that are inclusive, accessible, and engage the appropriate community of science educators, data scientists, and biodiversity researchers. Foster a diverse, equitable, inclusive, and accessible and professional workforce: As the DES develops and new tools and resources emerge, we need to be intentional in our commitment to building tools that are accessible and in assuring that access is equitable. This includes establishing best practices to ensure the community providing and accessing data is inclusive and representative of the diverse global community of potential data providers and users. Upfront, we must acknowledge and address issues of historic inequalities and colonial practices and provide appropriate attribution for past and future work while ensuring legal and regulatory compliance. Efforts must include creating transparent linkages among data and the humans that create the data that drives the DES. In this presentation, we will highlight recommendations for building workforce capacity within the DES that are diverse, inclusive, equitable and accessible, take into account the requirements of the biodiversity science community, and that are flexible to meet the needs of an evolving field. 
    more » « less
  5. Background Mobile health (mHealth) wearable devices are increasingly being adopted by individuals to help manage and monitor physiological signals. However, the current state of wearables does not consider the needs of racially minoritized low–socioeconomic status (SES) communities regarding usability, accessibility, and price. This is a critical issue that necessitates immediate attention and resolution. Objective This study’s aims were 3-fold, to (1) understand how members of minoritized low-SES communities perceive current mHealth wearable devices, (2) identify the barriers and facilitators toward adoption, and (3) articulate design requirements for future wearable devices to enable equitable access for these communities. Methods We performed semistructured interviews with low-SES Hispanic or Latine adults (N=19) from 2 metropolitan cities in the Midwest and West Coast of the United States. Participants were asked questions about how they perceive wearables, what are the current benefits and barriers toward use, and what features they would like to see in future wearable devices. Common themes were identified and analyzed through an exploratory qualitative approach. Results Through qualitative analysis, we identified 4 main themes. Participants’ perceptions of wearable devices were strongly influenced by their COVID-19 experiences. Hence, the first theme was related to the impact of COVID-19 on the community, and how this resulted in a significant increase in interest in wearables. The second theme highlights the challenges faced in obtaining adequate health resources and how this further motivated participants’ interest in health wearables. The third theme focuses on a general distrust in health care infrastructure and systems and how these challenges are motivating a need for wearables. Lastly, participants emphasized the pressing need for community-driven design of wearable technologies. Conclusions The findings from this study reveal that participants from underserved communities are showing emerging interest in using health wearables due to the COVID-19 pandemic and health care access issues. Yet, the needs of these individuals have been excluded from the design and development of current devices. 
    more » « less