In previous work, researchers in Human-Robot Interaction (HRI) have demonstrated that user trust in robots depends on effective and transparent communication. This may be particularly true for robots used for transportation, due to user reliance on such robots for physical movement and safety. In this paper, we present the design of an experiment examining the importance of proactive communication by robotic wheelchairs, as compared to non-vehicular mobile robots, within a Virtual Reality (VR) environment. Furthermore, we describe the specific advantages – and limitations – of conducting this type of HRI experiment in VR.
more »
« less
Lessons From A Small-Scale Robot Joining Experiment in VR
In this paper, we present a shared manipulation task performed both in virtual reality with a simulated robot and in the real world with a physical robot. A collaborative assembly task where the human and robot work together to construct as simple electrical circuit was chosen. While there are platforms available for conducting human robot interactions using virtual reality, there has not been significant work investigating how it can influence human perception of tasks that are typically done in person. We present an overview of the simulation environment used, describe the paired experiment being performed, and finally enumerate a set of design desiderata to be considered when conducting sim2real experiment involving humans in a virtual setting.
more »
« less
- PAR ID:
- 10466815
- Publisher / Repository:
- The Human-Robot Interaction Conference (HRI) 6th Int'l Workshop on Virtual, Augmented, and Mixed-Reality for Human-Robot Interactions (VAM-HRI)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Augmented Reality (AR) or Mixed Reality (MR) enables innovative interactions by overlaying virtual imagery over the physical world. For roboticists, this creates new opportunities to apply proven non-verbal interaction patterns, like gesture, to physically-limited robots. However, a wealth of HRI research has demonstrated that there are real benefits to physical embodiment (compared, e.g., to virtual robots displayed on screens). This suggests that AR augmentation of virtual robot parts could lead to similar challenges. In this work, we present the design of an experiment to objectively and subjectively compare the use of AR and physical arms for deictic gesture, in AR and physical task environments. Our future results will inform robot designers choosing between the use of physical and virtual arms, and provide new nuanced understanding of the use of mixed-reality technologies in HRI contexts. Index Tmore » « less
-
During a natural disaster such as hurricane, earth- quake, or fire, robots have the potential to explore vast areas and provide valuable aid in search & rescue efforts. These scenar- ios are often high-pressure and time-critical with dynamically- changing task goals. One limitation to these large scale deploy- ments is effective human-robot interaction. Prior work shows that collaboration between one human and one robot benefits from shared control. Here we evaluate the efficacy of shared control for human-swarm teaming in an immersive virtual reality environment. Although there are many human-swarm interaction paradigms, few are evaluated in high-pressure settings representative of their intended end use. We have developed an open-source virtual reality testbed for realistic evaluation of human-swarm teaming performance under pressure. We conduct a user study (n=16) comparing four human-swarm paradigms to a baseline condition with no robotic assistance. Shared control significantly reduces the number of instructions needed to operate the robots. While shared control leads to marginally improved team performance in experienced participants, novices perform best when the robots are fully autonomous. Our experimental results suggest that in immersive, high-pressure settings, the benefits of robotic assistance may depend on how the human and robots interact and the human operator’s expertise.more » « less
-
Augmented Reality (AR) technologies present an exciting new medium for human-robot interactions, enabling new opportunities for both implicit and explicit human-robot communication. For example, these technologies enable physically-limited robots to execute non-verbal interaction patterns such as deictic gestures despite lacking the physical morphology necessary to do so. However, a wealth of HRI research has demonstrated real benefits to physical embodiment (compared to, e.g., virtual robots on screens), suggesting AR augmentation of virtual robot parts could face challenges.In this work, we present empirical evidence comparing the use of virtual (AR) and physical arms to perform deictic gestures that identify virtual or physical referents. Our subjective and objective results demonstrate the success of mixed reality deictic gestures in overcoming these potential limitations, and their successful use regardless of differences in physicality between gesture and referent. These results help to motivate the further deployment of mixed reality robotic systems and provide nuanced insight into the role of mixed-reality technologies in HRI contexts.more » « less
-
For robots deployed in human-centric spaces, natural language promises an intuitive, natural interface. However, obtaining appropriate training data for grounded language in a variety of settings is a significant barrier. In this work, we describe using human-robot interactions in virtual reality to train a robot, combining fully simulated sensing and actuation with human interaction. We present the architecture of our simulator and our grounded language learning approach, then describe our intended initial experiments.more » « less
An official website of the United States government
