null
                            (Ed.)
                        
                    
            
                            While grounded language learning, or learning the meaning of language with respect to the physical world in which a robot operates, is a major area in human-robot interaction studies, most research occurs in closed worlds or domain-constrained settings. We present a system in which language is grounded in visual percepts without using categorical constraints by combining CNN-based visual featurization with natural language labels. We demonstrate results comparable to those achieved using handcrafted features for specific traits, a step towards moving language grounding into the space of fully open world recognition. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    