skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drawing Transforms: A Unifying Interaction Primitive to Procedurally Manipulate Graphics across Style, Space, and Time
Procedural functionality enables visual creators to rapidly edit, explore alternatives, and fine-tune artwork in many domains including illustration, motion graphics, and interactive animation. Symbolic procedural tools, such as textual programming languages, are highly expressive but often limit directly manipulating concrete artwork; whereas direct manipulation tools support some procedural expression but limit creators to pre-defined behaviors and inputs. Inspired by visions of using geometric input to create procedural relationships, we identify an opportunity to use vector geometry from artwork to specify expressive user-defined procedural functions. We present Drawing Transforms (DTs), a technique that enables the use of any drawing to procedurally transform the stylistic, spatial, and temporal properties of target artwork. We apply DTs in a prototype motion graphics system to author continuous and discrete transformations, modify multiple elements in a composition simultaneously, create animations, and control fine-grained procedural instantiation. We discuss how DTs can unify procedural authoring through direct manipulation across visual media domains.  more » « less
Award ID(s):
2007094
PAR ID:
10466843
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450394215
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Location:
Hamburg Germany
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The task of crafting procedural programs capable of generating structurally valid 3D shapes easily and intuitively remains an elusive goal in computer vision and graphics. Within the graphics community, generating procedural 3D models has shifted to using node graph systems. They allow the artist to create complex shapes and animations through visual programming. Being a high‐level design tool, they made procedural 3D modelling more accessible. However, crafting those node graphs demands expertise and training. We present GeoCode, a novel framework designed to extend an existing node graph system and significantly lower the bar for the creation of new procedural 3D shape programs. Our approach meticulously balances expressiveness and generalization for part‐based shapes. We propose a curated set of new geometric building blocks that are expressive and reusable across domains. We showcase three innovative and expressive programs developed through our technique and geometric building blocks. Our programs enforce intricate rules, empowering users to execute intuitive high‐level parameter edits that seamlessly propagate throughout the entire shape at a lower level while maintaining its validity. To evaluate the user‐friendliness of our geometric building blocks among non‐experts, we conduct a user study that demonstrates their ease of use and highlights their applicability across diverse domains. Empirical evidence shows the superior accuracy of GeoCode in inferring and recovering 3D shapes compared to an existing competitor. Furthermore, our method demonstrates superior expressiveness compared to alternatives that utilize coarse primitives. Notably, we illustrate the ability to execute controllable local and global shape manipulations. Our code, programs, datasets and Blender add‐on are available athttps://github.com/threedle/GeoCode. 
    more » « less
  2. MaxMSP is a visual programming language for creating interactive audiovisual media that has found great success as a flexible and accessible option for computer music. However, the visual interface requires manual object placement and connection, which can be inefficient. Automated patch editing is possible either by visual programming with the [thispatcher] object or text-based programming with the [js] object. However, these objects cannot automatically create and save new patches, and they operate at run-time only, requiring live input to trigger patch construction. There is no solution for automated creation of multiple patches at \textitcompile-time, such that the constructed patches do not contain their own constructors. To this end, we present MaxPy, an open-source Python package for programmatic construction and manipulation of MaxMSP patches. MaxPy replaces the manual actions of placing objects, connecting patchcords, and saving patch files with text-based Python functions, thus enabling dynamic, procedural, high-volume patch generation at compile-time. MaxPy also includes the ability to import existing patches, allowing users to move freely between text-based Python programming and visual programming with the Max GUI. MaxPy enables composers, programmers, and creators to explore expanded possibilities for complex, dynamic, and algorithmic patch construction through text-based Python programming of MaxMSP. 
    more » « less
  3. Sketching serves as a versatile tool for externalizing ideas, enabling rapid exploration and visual communication that spans various disciplines. While artificial systems have driven substantial advances in content creation and human-computer interaction, capturing the dynamic and abstract nature of human sketching remains challenging. In this work, we introduce SketchAgent, a language-driven, sequential sketch generation method that enables users to create, modify, and refine sketches through dynamic, conversational interactions. Our approach requires no training or fine-tuning. Instead, we leverage the sequential nature and rich prior knowledge of off-the-shelf multimodal large language models (LLMs). We present an intuitive sketching language, introduced to the model through in-context examples, enabling it to “draw” using string-based actions. These are processed into vector graphics and then rendered to create a sketch on a pixel canvas, which can be accessed again for further tasks. By drawing stroke by stroke, our agent captures the evolving, dynamic qualities intrinsic to sketching. We demonstrate that SketchAgent can generate sketches from diverse prompts, engage in dialogue-driven drawing, and collaborate meaningfully with human users. 
    more » « less
  4. Abstract Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research. 
    more » « less
  5. Drawing is an art that enables people to express their imagination and emotions. However, individuals usually face challenges in drawing, especially when translating conceptual ideas into visually coherent representations and bridging the gap between mental visualization and practical execution. In response, we propose ARtVista - a novel system integrating AR and generative AI technologies. ARtVista not only recommends reference images aligned with users’ abstract ideas and generates sketches for users to draw but also goes beyond, crafting vibrant paintings in various painting styles. ARtVista also offers users an alternative approach to create striking paintings by simulating the paint-by-number concept on reference images, empowering users to create visually stunning artwork devoid of the necessity for advanced drawing skills. We perform a pilot study and reveal positive feedback on its usability, emphasizing its effectiveness in visualizing user ideas and aiding the painting process to achieve stunning pictures without requiring advanced drawing skills. 
    more » « less