skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Search Algorithms for Multi-Agent Teamwise Cooperative Path Finding
Multi-Agent Path Finding (MA-PF) computes a set of collision-free paths for multiple agents from their respective starting locations to destinations. This paper considers a generalization of MA-PF called Multi-Agent Teamwise Cooperative Path Finding (MA-TC-PF), where agents are grouped as multiple teams and each team has its own objective to be minimized. For example, an objective can be the sum or max of individual arrival times of the agents. In general, there is more than one team, and MA-TC-PF is thus a multi-objective planning problem with the goal of finding the entire Paretooptimal front that represents all possible trade-offs among the objectives of the teams. To solve MA-TC-PF, we propose two algorithms TC-CBS and TC-M*, which leverage the existing CBS and M* for conventional MA-PF. We discuss the conditions under which the proposed algorithms are complete and are guaranteed to find the Pareto-optimal front. We present numerical results for several types of MA-TC-PF problems.  more » « less
Award ID(s):
2120529
PAR ID:
10466870
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2365-8
Page Range / eLocation ID:
1407 to 1413
Format(s):
Medium: X
Location:
London, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collisionfree paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework. 
    more » « less
  2. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable. 
    more » « less
  3. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable 
    more » « less
  4. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  5. In a multi-agent path finding (MAPF) problem, the task is to move a set of agents to their goal locations without conflicts. In the real world, unexpected events may delay some of the agents. In this paper, we therefore study the problem of finding a p-robust solution to a given MAPF problem, which is a solution that succeeds with probability at least p, even though unexpected delays may occur. We propose two methods for verifying that given solutions are p-robust. We also introduce an optimal CBS-based algorithm, called pR-CBS, and a fast suboptimal algorithm, called pR-GCBS, for finding such solutions. Our experiments show that a p-robust solution reduces the number of conflicts compared to optimal, non-robust solutions. 
    more » « less