Today, video cameras are ubiquitously deployed. These cameras collect, stream, store, and analyze video footage for a variety of use cases, ranging from surveillance, retail analytics, architectural engineering, and more. At the same time, many citizens are becoming weary of the amount of personal data captured, along with the algorithms and datasets used to process video pipelines. This work investigates how users can opt-out of such pipelines by explicitly providing consent to be recorded. An ideal system should obfuscate or otherwise cleanse non-consenting user data, ideally before a user even enters the video processing pipeline itself. We present a system, called Consent-Box, that enables obfuscation of users without using complex or personally-identifying vision techniques. Instead, a user's location on a video frame is estimated via Wi-Fi localization of a user's mobile device. This estimation allows us to remove individuals from frames before those frames enter complex vision pipelines.
more »
« less
A Picture is Worth 1,000 Millimeters: Combining Vision and Wi-Fi to Improve Localization
In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by 2.7× and SpotFi by 2.3×.
more »
« less
- Award ID(s):
- 1908910
- PAR ID:
- 10466888
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2770-0542
- ISBN:
- 979-8-3503-3165-3
- Page Range / eLocation ID:
- 56 to 66
- Format(s):
- Medium: X
- Location:
- Boston, MA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Indoor localization based on Wi-Fi fingerprints has been an active research topic for years. However, existing approaches do not consider the instability of access points (APs) which may be unreliable in practice, particularly the ones deployed by individual users. This instability impacts the localization accuracy severely, due to the unreliable or even wrong Wi-Fi fingerprints. Ideally, the localization should be done using only the well-deployed APs (e.g., deployed by facility teams). However, in many places the number of these APs is too few to achieve a good localization accuracy. To solve this problem, we leverage emerging smart APs equipped with multi-mode antennas, and build a new indoor localization system called MMLOC to reduce the number of necessary APs. The key idea is controlling the modes of AP antennas to generate more fingerprints with fewer APs. A clustering based localization strategy is designed to enable a mobile terminal to figure out the RSSI (Received Signal Strength Indicator) for different antenna modes without requiring any synchronization. We have implemented a prototype system using smart APs and commercial smartphones. Experimental results demonstrate that MMLOC can reduce the number of necessary APs by 50%, and achieve the same or even better localization accuracy.more » « less
-
In this paper, we present ViTag to associate user identities across multimodal data, particularly those obtained from cameras and smartphones. ViTag associates a sequence of vision tracker generated bounding boxes with Inertial Measurement Unit (IMU) data and Wi-Fi Fine Time Measurements (FTM) from smartphones. We formulate the problem as association by sequence to sequence (seq2seq) translation. In this two-step process, our system first performs cross-modal translation using a multimodal LSTM encoder-decoder network (X-Translator) that translates one modality to another, e.g. reconstructing IMU and FTM readings purely from camera bounding boxes. Second, an association module finds identity matches between camera and phone domains, where the translated modality is then matched with the observed data from the same modality. In contrast to existing works, our proposed approach can associate identities in multi-person scenarios where all users may be performing the same activity. Extensive experiments in real-world indoor and outdoor environments demonstrate that online association on camera and phone data (IMU and FTM) achieves an average Identity Precision Accuracy (IDP) of 88.39% on a 1 to 3 seconds window, outperforming the state-of-the-art Vi-Fi (82.93%). Further study on modalities within the phone domain shows the FTM can improve association performance by 12.56% on average. Finally, results from our sensitivity experiments demonstrate the robustness of ViTag under different noise and environment variations.more » « less
-
Wi-Fi is an integral part of today's Internet infrastructure, enabling a diverse range of applications and services. Prior approaches to Wi-Fi resource allocation optimized Quality of Service (QoS) metrics, which often do not accurately reflect the user's Quality of Experience (QoE). To address the gap between QoS and QoE, we introduce Maestro, an adaptive method that formulates the Wi-Fi resource allocation problem as a partially observable Markov decision process (PO-MDP) to maximize the overall system QoE and QoE fairness. Maestro estimates QoE without using any application or client data; instead, it treats them as black boxes and leverages temporal dependencies in network telemetry data. Maestro dynamically adjusts policies to handle different classes of applications and variable network conditions. Additionally, Maestro uses a simulation environment for practical training. We evaluate Maestro in an enterprise-level Wi-Fi testbed with a variety of applications, and find that Maestro achieves up to 25× and 78% improvement in QoE and fairness, respectively, compared to the widely-deployed Wi-Fi Multimedia (WMM) policy. Compared to the state-of-the-art learning approach QFlow, Maestro increases QoE by up to 69%. Unlike QFlow which requires modifications to clients, we demonstrate that Maestro improves QoE of popular over-the-top services with unseen traffic without control over clients or servers.more » « less
-
In this paper, we introduce a neural network (NN)-based symbol detection scheme for Wi-Fi systems and its associated hardware implementation in software radios. To be specific, reservoir computing (RC), a special type of recurrent neural network (RNN), is adopted to conduct the task of symbol detection for Wi-Fi receivers. Instead of introducing extra training overhead/set to facilitate the RC-based symbol detection, a new training framework is introduced to take advantage of the signal structure in existing Wi-Fi protocols (e.g., IEEE 802.11 standards), that is, the introduced RC-based symbol detector will utilize the inherent long/short training sequences and structured pilots sent by the Wi-Fi transmitter to conduct online learning of the transmit symbols. In other words, our introduced NN-based symbol detector does not require any additional training sets compared to existing Wi-Fi systems. The introduced RC-based Wi-Fi symbol detector is implemented on the software-defined radio (SDR) platform to further provide realistic and meaningful performance comparisons against the traditional Wi-Fi receiver. Over the air, experiment results show that the introduced RC based Wi-Fi symbol detector outperforms conventional Wi-Fi symbol detection methods in various environments indicating the significance and the relevance of our work.more » « less
An official website of the United States government

