In the past, researchers designed, deployed, and evaluated Wi-Fi based localization techniques in order to locate users and devices without adding extra or costly infrastructure. However, as infrastructure deployments change, one must reexamine the role of Wi-Fi localization. Today, cameras are becoming increasingly deployed, and therefore this work examines how contextual and vision data obtained from cameras can be integrated with Wi-Fi localization techniques. We present an approach called CALM that works on commodity APs and cameras. Our approach contains several contributions: a camera line fitting technique to restrict the search space of candidate locations, single AP and camera localization via a deprojection scheme inspired from 3D cameras, simple and robust AP weighting that analyzes the context of users via the camera, and a new virtual camera methodology to scale analysis. We motivate our scheme by analyzing real camera and AP topologies from a major vendor. Our evaluation over 9 rooms and 102,300 wireless readings shows CALM can obtain decimeter-level accuracy, improving performance over previous Wi-Fi techniques like FTM by 2.7× and SpotFi by 2.3×.
more »
« less
MMLOC: multi-mode indoor localization system based on smart access points
Indoor localization based on Wi-Fi fingerprints has been an active research topic for years. However, existing approaches do not consider the instability of access points (APs) which may be unreliable in practice, particularly the ones deployed by individual users. This instability impacts the localization accuracy severely, due to the unreliable or even wrong Wi-Fi fingerprints. Ideally, the localization should be done using only the well-deployed APs (e.g., deployed by facility teams). However, in many places the number of these APs is too few to achieve a good localization accuracy. To solve this problem, we leverage emerging smart APs equipped with multi-mode antennas, and build a new indoor localization system called MMLOC to reduce the number of necessary APs. The key idea is controlling the modes of AP antennas to generate more fingerprints with fewer APs. A clustering based localization strategy is designed to enable a mobile terminal to figure out the RSSI (Received Signal Strength Indicator) for different antenna modes without requiring any synchronization. We have implemented a prototype system using smart APs and commercial smartphones. Experimental results demonstrate that MMLOC can reduce the number of necessary APs by 50%, and achieve the same or even better localization accuracy.
more »
« less
- Award ID(s):
- 1827126
- PAR ID:
- 10192133
- Date Published:
- Journal Name:
- MobiQuitous '19: Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
- Page Range / eLocation ID:
- 473 to 482
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Indoor navigation systems are very useful in large complex indoor environments such as shopping malls. Current systems focus on improving indoor localization accuracy and must be combined with an accurate labeled floor plan to provide usable indoor navigation services. Such labeled floor plans are often unavailable or involve a prohibitive cost to manually obtain. In this paper, we present IndoorWaze, a novel crowdsourcing-based context-aware indoor navigation system that can automatically generate an accurate context-aware floor plan with labeled indoor POIs for the first time in literature. IndoorWaze combines the Wi-Fi fingerprints of indoor walkers with the Wi-Fi fingerprints and POI labels provided by POI employees to produce a high-fidelity labeled floor plan. As a lightweight crowdsourcing-based system, IndoorWaze involves very little effort from indoor walkers and POI employees. We prototype IndoorWaze on Android smartphones and evaluate it in a large shopping mall. Our results show that IndoorWaze can generate a high-fidelity labeled floor plan, in which all the stores are correctly labeled and arranged, all the pathways and crossings are correctly shown, and the median estimation error for the store dimension is below 12%.more » « less
-
Indoor localization is emerging as an important application domain for enhanced navigation (or tracking) of people and assets in indoor locales such as buildings, malls, and underground mines. Most indoor localization solutions proposed in prior work do not deliver good accuracy without expensive infrastructure (and even then, the results may lack consistency). Ambient wireless received signal strength indication (RSSI) based fingerprinting using smart mobile devices is a low-cost approach to the problem. However, creating an accurate ‘fingerprinting-only’ solution remains a challenge. This paper presents a novel approach to transform Wi-Fi signatures into images, to create a scalable fingerprinting framework based on Convolutional Neural Networks (CNNs). Our proposed CNN based indoor localization framework (CNN-LOC) is validated across several indoor environments and shows improvements over the best known prior works, with an average localization error of < 2 meters.more » « less
-
The vision of smart homes is rapidly becoming a reality, as the Internet of Things and other smart devices are deployed widely. Although smart devices offer convenience, they also create a significant management problem for home residents. With a large number and variety of devices in the home, residents may find it difficult to monitor, or even locate, devices. A central controller that brings all the home’s smart devices under secure management and a unified interface would help homeowners and residents track and manage their devices. We envision a solution called the SPLICEcube whose goal is to detect smart devices, locate them in three dimensions within the home, securely monitor their network traffic, and keep an inventory of devices and important device information throughout the device’s lifecycle. The SPLICEcube system consists of the following components: 1) a main cube, which is a centralized hub that incorporates and expands on the functionality of the home router, 2) a database that holds network data, and 3) a set of support cubelets that can be used to extend the range of the network and assist in gathering network data. To deliver this vision of identifying, securing, and managing smart devices, we introduce an architecture that facilitates intelligent research applications (such as network anomaly detection, intrusion detection, device localization, and device firmware updates) to be integrated into the SPLICEcube. In this thesis, we design a general-purpose Wi-Fi architecture that underpins the SPLICEcube. The architecture specifically showcases the functionality of the cubelets (Wi-Fi frame detection, Wi-Fi frame parsing, and transmission to cube), the functionality of the cube (routing, reception from cubelets, information storage, data disposal, and research application integration), and the functionality of the database (network data storage). We build and evaluate a prototype implementation to demonstrate our approach is scalable to accommodate new devices and extensible to support different applications. Specifically, we demonstrate a successful proof-of-concept use of the SPLICEcube architecture by integrating a security research application: an "Inside-Outside detection" system that classifies an observed Wi-Fi device as being inside or outside the home.more » « less
-
Indoor positioning systems (IPSes) can enable many location-based services in large indoor venues where GPS signals are unavailable or unreliable. Among the most viable types of IPSes, RSS-IPSes rely on ubiquitous smartphones and indoor WiFi infrastructures and explore distinguishable received signal strength (RSS) measurements at different indoor locations as their location fingerprints. RSS-IPSes are unfortunately vulnerable to physical-layer RSS attacks that cannot be thwarted by conventional cryptographic techniques. Existing defenses against RSS attacks are all subject to an inherent tradeoff between indoor positioning accuracy and attack resilience. This paper presents the design and evaluation of MV-IPS, a novel RSS-IPS based on weighted multi-voting, which does not suffer from this tradeoff. In MV-IPS, every WiFi access point (AP) that receives a user’s RSS measurement gives a weighted vote for every reference location, and the reference location that receives the highest accumulative votes from all APs is output as the user’s most likely position. Trace-driven simulation studies based on real RSS measurements demonstrate that MV-IPS can achieve much higher positioning accuracy than prior solutions no matter whether RSS attacks are present.more » « less
An official website of the United States government

