skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PASTA: A Dataset for Modeling Participant States in Narratives
The events in a narrative are understood as a coherent whole via the underlying states of their participants. Often, these participant states are not explicitly mentioned, instead left to be inferred by the reader. A model that understands narratives should likewise infer these implicit states, and even reason about the impact of changes to these states on the narrative. To facilitate this goal, we introduce a new crowdsourced English-language, Participant States dataset, PASTA. This dataset contains inferable participant states; a counterfactual perturbation to each state; and the changes to the story that would be necessary if the counterfactual were true. We introduce three state-based reasoning tasks that test for the ability to infer when a state is entailed by a story, to revise a story conditioned on a counterfactual state, and to explain the most likely state change given a revised story. Experiments show that today’s LLMs can reason about states to some degree, but there is large room for improvement, especially in problems requiring access and ability to reason with diverse types of knowledge (e.g. physical, numerical, factual).  more » « less
Award ID(s):
2024878
PAR ID:
10466896
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Transactions of the ACL (TACL)
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
ISSN:
2307-387X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As humans, we can modify our assumptions about a scene by imagining alternative objects or concepts in our minds. For example, we can easily anticipate the implications of the sun being overcast by rain clouds (e.g., the street will get wet) and accordingly prepare for that. In this paper, we introduce a new task/dataset called Commonsense Reasoning for Counterfactual Scene Imagination (COSIM) which is designed to evaluate the ability of AI systems to reason about scene change imagination. In this task/dataset, models are given an image and an initial question-response pair about the image. Next, a counterfactual imagined scene change (in textual form) is applied, and the model has to predict the new response to the initial question based on this scene change. We collect 3.5K high-quality and challenging data instances, with each instance consisting of an image, a commonsense question with a response, a description of a counterfactual change, a new response to the question, and three distractor responses. Our dataset contains various complex scene change types (such as object addition/removal/state change, event description, environment change, etc.) that require models to imagine many different scenarios and reason about the changed scenes. We present a baseline model based on a vision-language Transformer (i.e., LXMERT) and ablation studies. Through human evaluation, we demonstrate a large human-model performance gap, suggesting room for promising future work on this challenging counterfactual, scene imagination task. 
    more » « less
  2. Narrative planners generate sequences of actions that represent story plots given a story domain model. This is a useful way to create branching stories for interactive narrative systems that maintain logical consistency across multiple storylines with different content. There is a need for story comparison techniques that can enable systems like experience managers and domain authoring tools to reason about similarities and differences between multiple stories or branches. We present an algorithm for summarizing narrative plans as numeric vectors based on a cognitive model of human story perception. The vectors encode important story information and can be compared using standard distance functions to quantify the overall semantic difference between two stories. We show that this distance metric is highly accurate based on human annotations of story similarity, and compare it to several alternative approaches. We also explore variations of our method in an attempt to broaden its applicability to other types of story systems. 
    more » « less
  3. We describe a methodology for making counterfactual predictions in settings where the information held by strategic agents and the distribution of payoff-relevant states of the world are unknown. The analyst observes behavior assumed to be rationalized by a Bayesian model, in which agents maximize expected utility, given partial and differential information about the state. A counterfactual prediction is desired about behavior in another strategic setting, under the hypothesis that the distribution of the state and agents’ information about the state are held fixed. When the data and the desired counterfactual prediction pertain to environments with finitely many states, players, and actions, the counterfactual prediction is described by finitely many linear inequalities, even though the latent parameter, the information structure, is infinite dimensional. (JEL D44, D82, D83) 
    more » « less
  4. Planning-based narrative generation is effective at producing stories with a logically-sound flow of events, but it can be limiting due to the rigidity of its constraints and the high burden on the domain author to define story-world objects, initial states, and author and character goals. Giving the system the freedom to add objects and events to the story-world history arbitrarily can improve variety and reduce authorial burden, but risks leading to stories that seem jarringly contrived to the audience. I propose to use question-answering as the antidote to contrivance in a highly-generative interactive narrative system: By modeling the player's beliefs about the story world, inferring the implicit questions the player may be asking through their interactions, and answering those questions in a way consistent with the player's prior knowledge, a system could focus on creating cohesion in the ways that matter most to the player while accepting a degree of contrivance in the details that the player is likely to overlook. 
    more » « less
  5. Knowledge about outcomes is critical for complex event understanding but is hard to acquire. We show that by pre-identifying a participant in a complex event, crowdworkers are able to (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground the outcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of 8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96 weighted Fleiss Kappa). Our dataset, POQue (Participant Outcome Questions), enables the exploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant’s influence over the event culmination. 
    more » « less