skip to main content

This content will become publicly available on September 1, 2024

Title: A call to termitologists: it is time to abandon the use of “lower” and “higher” termites
This commentary paper addresses the outdated and misleading terminology used to categorize termites into “higher” and “lower”. These terms perpetuate a linear progression view of evolution, which is both inaccurate and detrimental to our understanding of the diversity of life. We trace the historical origins of these terms and highlight their flawed interpretation of evolutionary relationships. We advocate for the adoption of Termitidae (or termitid), rather than “higher termites”. As for the paraphyletic group of “lower termites”, we recommend refraining from grouping them together, unless specifically referring to their symbionts. In such cases, we propose “protist-dependent termites” or “non-Termitidae termites”.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Insectes Sociaux
Page Range / eLocation ID:
295 to 299
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation.

    To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non‐native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers.

    Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna.

    We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite‐driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities.

    Synthesis. Ecosystem‐scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite‐driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world‐wide.

    more » « less
  2. Several species of millimetric-sized termites across Africa, Asia, Australia, and South America collectively construct large, meter-sized, porous mound structures that serve to regulate mound temperature, humidity, and gas concentrations. These mounds display varied yet distinctive morphologies that range widely in size and shape. To explain this morphological diversity, we introduce a mathematical model that couples environmental physics to insect behavior: The advection and diffusion of heat and pheromones through a porous medium are modified by the mound geometry and, in turn, modify that geometry through a minimal characterization of termite behavior. Our model captures the range of naturally observed mound shapes in terms of a minimal set of dimensionless parameters and makes testable hypotheses for the response of mound morphology to external temperature oscillations and internal odors. Our approach also suggests mechanisms by which evolutionary changes in odor production rate and construction behavior coupled to simple physical laws can alter the characteristic mound morphology of termites.

    more » « less
  3. null (Ed.)
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests. 
    more » « less
  4. Abstract

    Spatially overdispersed mounds of fungus‐farming termites (Macrotermitinae) are hotspots of nutrient availability and primary productivity in tropical savannas, creating spatial heterogeneity in communities and ecosystem functions. These termites influence the local availability of nutrients in part by redistributing nutrients across the landscape, but the links between termite ecosystem engineering and the soil microbes that are the metabolic agents of nutrient cycling are little understood. We used DNA metabarcoding of soils fromOdontotermes montanusmounds to examine the influence of termites on soil microbial communities in a semi‐arid Kenyan savanna. We found that bacterial and fungal communities were compositionally distinct in termite‐mound topsoils relative to the surrounding savanna, and that bacterial communities were more diverse on mounds. The higher microbial alpha and beta diversity associated with mounds created striking spatial patterning in microbial community composition, and boosted landscape‐scale microbial richness and diversity. Selected enzyme assays revealed consistent differences in potential enzymatic activity, suggesting links between termite‐induced heterogeneity in microbial community composition and the spatial distribution of ecosystem functions. We conducted a large‐scale field experiment in which we attempted to simulate termites’ effects on microbes by fertilizing mound‐sized patches; this altered both bacterial and fungal communities, but in a different way than natural mounds. Elevated levels of inorganic nitrogen, phosphorus and potassium may help to explain the distinctive fungal communities in termite‐mound soils, but cannot account for the distinctive bacterial communities associated with mounds.

    more » « less
  5. Abstract

    Standing dead trees (snags) decompose more slowly than downed dead wood and provide critical habitat for many species. The rate at which snags fall therefore influences forest carbon dynamics and biodiversity. Fall rates correlate strongly with mean annual temperature, presumably because warmer climates facilitate faster wood decomposition and hence degradation of the structural stability of standing wood. These faster decomposition rates coincide with turnover from fungal‐dominated wood decomposer communities in cooler forests to codomination by fungi and termites in warmer regions. A key question for projecting forest dynamics is therefore whether temperature effects on wood decomposition arise primarily because warmer conditions facilitate faster decomposer metabolism, or are also influenced indirectly by belowground community turnover (e.g., termites exert additional influence beyond fungal‐plus‐bacterial mediated decomposition). To test between these possibilities, we simulate standing dead trees with untreated wooden posts and follow them in the field across 5 yr at 12 sites, before measuring buried, soil–air interface and aerial post sections to quantify wood decomposition and organism activities. High termite activities at the warmer sites are associated with rates of postfall that are three times higher than at the cooler sites. Termites primarily consume buried wood, with decomposition rates greatest where termite activities are highest. However, where higher microbial and termite activities co‐occur, they appear to compensate for one another first, and then to slow decomposition rates at their highest activities, suggestive of interference competition. If the range of microbial and termite codomination of wood decomposer communities expands under climate warming, our data suggest that expansion will accelerate snag fall with consequent effects on forest carbon cycling and biodiversity in forests previously dominated by microbial decomposers.

    more » « less