The dominant U.S. cultural norms shape science, technology, engineering, and math (STEM), and in turn, these norms shape science communication, further perpetuating oppressive systems. Despite being a core scientific skill, science communication research and practice lack inclusive training spaces that center marginalized identities. We address this need with a healing-centered counterspace grounded in the key principles of inclusive science communication: ReclaimingSTEM. ReclaimingSTEM is a science communication and science policy training space that centers the experiences, needs, and wants of people from marginalized communities. ReclaimingSTEM problematizes and expands the definitions of “what counts” as science communication. We organize ReclaimingSTEM with intentionality, emphasizing inclusion at every part of the process. Since initiating in 2018, five ReclaimingSTEM workshops have been held in multiple locations, both in-person and virtually, reaching more than 700 participants from all over the globe. In this paper, we share our model for ReclaimingSTEM, reflections of workshop participants and speakers, barriers faced during organizing, and recommendations for creating truly inclusive practices in science communication spaces.
more »
« less
Inclusive Science Communication training for first-year STEM students promotes their identity and self-efficacy as scientists and science communicators
IntroductionIt is critical for STEM students to be able to discuss science with diverse audiences, yet many STEM students do not receive adequate training in these skills. When students have the skills to communicate about science, they may feel a resulting sense of empowerment as a scientist as well as help members of society understand science. MethodsIn this study, we developed, implemented, and evaluated a workshop that gave students understanding of and practice in applying Inclusive Science Communication. We assessed the workshop via a mixed-methods approach. ResultsWe quantified student affective measures that are associated with STEM persistence, such as science self-efficacy and science identity, showing that the workshop increased these measures both for students of marginalized identities and for students who do not hold these identities. We also assessed student open-ended responses for themes related to the Theory of Planned Behavior, Community Cultural Wealth, and White Supremacy Culture, finding that forms of cultural capital empowered students to perform science communication behaviors while power imbalances, fear of conflict, and perfectionism presented barriers to these behaviors. DiscussionThis study highlights the importance of providing explicit training and practice in Inclusive Science Communication for undergraduate STEM students. Our results also suggest that students need the opportunity for reflexivity – that is, the practice of reflecting upon their identities and motivations – in order to develop in their identity and confidence as scientists and science communicators.
more »
« less
- Award ID(s):
- 2225095
- PAR ID:
- 10466913
- Publisher / Repository:
- Frontiers in Education
- Date Published:
- Journal Name:
- Frontiers in Education
- Volume:
- 8
- ISSN:
- 2504-284X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Floyd, Jeanetta H (Ed.)ABSTRACT Undergraduate students need the opportunity to engage with primary scientific literature so they can gain a greater understanding of the scientific process and insights into the larger impacts of scientific research in their field. Reading primary scientific literature (PSL) also provides the opportunity for students to consider the application of primary scientific research to help solve socioscientific issues. Helping students consider more inclusive approaches to science communication can facilitate their connections between primary scientific research and collaborative solving of socioscientific issues. The CREATE method by Hoskins et al. is one pre-existing method of reading scientific papers that gives students a structured opportunity to examine papers. The CREATE method gives students the opportunity to practice scientific process skills, reflect on the impact of research, and consider future studies. We have added an additional element to the CREATE method to help students consider other areas of expertise and ways of knowing needed to apply science in the article to solve socioscientific issues, helping them take a more inclusive approach to reading the PSL. We have deemed this activity ‘inclusive-CREATE’ or iCREATE. Here, we present a curricular plan for implementing iCREATE and show evidence of its efficacy. For instance, we show that the iCREATE method increases students’ science and science communication identity and self-efficacy. We also show that iCREATE increases students’ inclusive science communication self-efficacy, intents, and planned behaviors. Overall, adding a more inclusive element to the CREATE method will help students feel more confident, more like a scientist, and more likely to engage in inclusive science communication behaviors.more » « less
-
Societal Impact StatementThe practice of writing science blogs benefits both the scientist and society alike by providing professional development opportunities and delivering information in a format that is accessible to large and diverse audiences. By designing a project that introduced upper‐level undergraduate students to science blog writing with a focus on plant biology, we piqued students' interest in science writing and the content of a popular plant science blog website. If adopted more widely, this work could broaden the scope of science education and promote the development of effective science communication skills for the next generation of scientists. SummarySuccessful scientists must communicate their research to broad audiences, including distilling key scientific concepts for the general public. Students pursuing careers in Science, Technology, Engineering, and Mathematics (STEM) fields benefit from developing public communication skills early in their careers, but opportunities are limited in traditional biology curricula.We created the “Plant Science Blogging Project” for a Plant Biology undergraduate course at the University of Pittsburgh in Fall 2018 and 2019. Students wrote blog posts merging personal connections with plants with plant biology concepts for the popular science blogsPlant Love StoriesandEvoBites. By weaving biology into their narratives, students learned how to share botanical knowledge with the general public.The project had positive impacts on student learning and public engagement. In post‐assignment surveys, the majority of students reported that they enjoyed the assignment, felt it improved their understanding of plant biology, and piqued their interest in reading and writing science blogs in the future. Approximately one‐third of the student‐authored blogs were published, including two that rose to the top 10 most‐read posts on Plant Love Stories. Some dominant themes in student blogs, including medicine and culture, differed from common story themes published on the web, indicating the potential for students to diversify science blog content.Overall, the Plant Science Blogging Project allows undergraduate students to engage with plant biology topics in a new way, sharpen their scientific communication skills in accordance with today's world of mass information sharing, and contribute to the spread of scientific knowledge for public benefit.more » « less
-
Graduate students emerging from STEM programs face inequitable professional landscapes in which their ability to practice inclusive and effective science communication with interdisciplinary and public audiences is essential to their success. Yet these students are rarely offered the opportunity to learn and practice inclusive science communication in their graduate programs. Moreover, minoritized students rarely have the opportunity to validate their experiences among peers and develop professional sensibilities through research training. In this article, the authors offer the Science Communication (Sci/Comm) Scholar’s working group at The University of Texas at San Antonio as one model for training graduate students in human dimensions and inclusive science communication for effective public engagement in thesis projects and beyond. The faculty facilitated peer-to-peer working group encouraged participation by women who often face inequities in STEM workplaces. Early results indicate that team-based training in both the science and art of public engagement provides critical exposure to help students understand the methodological care needed for human dimensions research, and to facilitate narrative-based citizen science engagements. The authors demonstrate this through several brief profiles of environmental science graduate students’ thesis projects. Each case emphasizes the importance of research design for public engagement via quantitative surveys and narrative-based science communication interventions. Through a faculty facilitated peer-to-peer working group framework, research design and methodological care function as an integration point for social scientific and rhetorical training for inclusive science communication with diverse audiences.more » « less
-
Abstract BackgroundMentoring is an important developmental relationship that can positively impact student growth, specifically, students' capacity to make sense of their own selves through addressing any possible incongruence between their social identities and emerging professional identity as engineers. This need is even more pronounced for students who have one or more identities that are minoritized in the field of engineering. PurposeAlthough prior literature has reported mentoring to have contributed to students' professional identity development as engineers, we lack an understanding of how multiple developers in students' developmental networks can offer complementary support. To address this gap, we sought to understand how diverse developers in students' networks enabled them to filter stereotypes that make their minoritized social identities incongruent with their evolving engineering identity. Design/MethodsWe used an idiographic case study methodology and paired interpretative phenomenological analysis (IPA) with intersectionality to analyze data from 10 undergraduate minoritized engineering students. ResultsWe offer three cases in this paper to illustrate minoritized students experiences at the intersections of their identities and how different developers offered three types of holding behaviors (e.g., empathic acknowledgment/confirmation, enabling perspective/contradiction, containment/continuity) that enabled the student mentees to grow their meaning‐making capacity (from formulaic to foundational) so that they could align their social identities with their emerging professional identity as engineers. ConclusionWe conclude the paper with a discussion of both research and practice implications about utilizing diverse developmental networks for growing students' meaning‐making capacities needed for them to better comprehend their multiple identities.more » « less
An official website of the United States government

